Myosin light chain kinase (MLCK) is a key regulator of various forms of cell motility including smooth muscle contraction, cell migration, cytokinesis, receptor capping, secretion, etc. Inhibition of MLCK activity in endothelial and epithelial monolayers using cell-permeant peptide Arg-Lys-Lys-Tyr-Lys-Tyr-Arg-Arg-Lys (PIK, Peptide Inhibitor of Kinase) allows protecting the barrier capacity, suggesting a potential medical use of PIK. However, low stability of L-PIK in a biological milieu prompts for development of more stable L-PIK analogues for use as experimental tools in basic and drug-oriented biomedical research.
View Article and Find Full Text PDFRecently discovered 210-kDa myosin light chain kinase (MLCK-210) is identical to 108-130 kDa MLCK, the principal regulator of the myosin II molecular motor, except for the presence of a unique amino terminal extension. Our in vitro experiments and transfected cell studies demonstrate that the N-terminal half of MLCK-210 unique tail domain has novel microfilament and microtubule binding activity. Consistent with this activity, the MLCK-210 domain codistributes with microfilaments and microtubules in cultured cells and with soluble tubulin in nocodazole-treated cells.
View Article and Find Full Text PDF