Publications by authors named "Elena L Paley"

The author discussed recently the possible molecular mechanisms that cause the COVID-19 disease symptoms. Here the analysis of the recent experimental data supports the hypothesis that production of the gut microbial tryptamine can be induced by the SARS-CoV-2 fecal viral activity due to the selective pressure or positive selection of tryptamine-producing microorganisms. In this report, the author suggests that the mechanism of microbial selection bases on the abilities of tryptamine to affect the viral nucleic acid.

View Article and Find Full Text PDF

Background: COVID-19 can be related to any diseases caused by microbial infection(s) because 1) co-infection with COVID-19-related virus and other microorganism(s) and 2) because metabolites produced by microorganisms such as bacteria, fungi, and protozoan can be involved in necrotizing pneumonia and other necrotizing medical conditions observed in COVID-19.

Objective: By way of illustration, the microbial metabolite of aromatic amino acid tryptophan, a biogenic amine tryptamine inducing neurodegeneration in cell and animal models, also induces necrosis.

Methods: This report includes analysis of COVID-19 positivity by zip codes in Florida and relation of the positivity to population density, possible effect of ecological and social factors on spread of COVID-19, autopsy analysis of COVID-19 cases from around the world, serum metabolomics analysis, and evaluation of autoantigenome related to COVID-19.

View Article and Find Full Text PDF

Alzheimer's disease (AD)-associated sequence (ADAS) of cultured fecal bacteria was discovered in human gut targeted screening. This study provides important information to expand our current understanding of the structure/activity relationship of ADAS and putative inhibitors/activators that are potentially involved in ADAS appearance/disappearance. The NCBI database analysis revealed that ADAS presents at a large proportion in American Indian Oklahoman (C&A) with a high prevalence of obesity/diabetes and in colorectal cancer (CRC) patients from the US and China.

View Article and Find Full Text PDF

Human gut bacterial Na(+)-transporting NADH:ubiquinone reductase (NQR) sequence is associated with Alzheimer disease (AD). Here, Alzheimer disease-associated sequence (ADAS) is further characterized in cultured spore-forming . Tryptophan and NQR substrate ubiquinone have common precursor chorismate in microbial shikimate pathway.

View Article and Find Full Text PDF

Transgenic mice used for Alzheimer's disease (AD) preclinical experiments do not recapitulate the human disease. In our models, the dietary tryptophan metabolite tryptamine produced by human gut microbiome induces tryptophanyl-tRNA synthetase (TrpRS) deficiency with consequent neurodegeneration in cells and mice. Dietary supplements, antibiotics and certain drugs increase tryptamine content in vivo.

View Article and Find Full Text PDF

Earlier we reported induction of neurotoxicity and neurodegeneration by tryptophan metabolites that link the metabolic alterations to Alzheimer's disease (AD). Tryptophan is a product of Shikimate pathway (SP). Human cells lack SP, which is found in human gut bacteria exclusively using SP to produce aromatic amino acids (AAA).

View Article and Find Full Text PDF

Neurodegeneration is induced by tryptamine, a human diet constituent, which easily crosses the blood/brain barrier. Tryptamine neurotoxicity, caused by tryptophanyl-tRNA synthetase (TrpRS) inhibition and downregulation leads to tryptophanyl-tRNA deficiency and synthesis of aberrant proteins. We identified axonal defects in hippocampus of tryptamine- treated mice similar to those observed in human brain of patients with Alzheimer's disease, multiple sclerosis and epilepsy using anti-TrpRS site-directed antibodies.

View Article and Find Full Text PDF

Tryptophanyl-tRNA synthetase (TrpRS) expression alters in colorectal (CRC), pancreatic (PC), and cervical (CC) cancers. Here, phosphorylation of unfolded TrpRS and its fragments is stimulated by human cancer sera (CS; n = 13) and serum of rabbit tumor induced by Rous sarcoma virus, unaffected by donor sera (NS; 11/15) and abolished by alkaline phosphatase. At 20 years of follow-up, serum-inducible TrpRS phosphorylation found years before healthy donors (3/15) diagnosed with PC, CRC, or leukemia.

View Article and Find Full Text PDF

Objectives: Pancreatic cancer is one of most deadly because of its aggressive growth and high metastatic ability that correlates with intratumoral hypoxia. Earlier diagnosis and prognosis marker of pancreatic cancer is not yet available. In colorectal cancer, protein biosynthesis enzyme, tryptophanyl-tRNA synthetase (TrpRS), is up-regulated in good-prognosis tumors and down-regulated in metastatic poor-prognosis tumors.

View Article and Find Full Text PDF

Tryptophanyl-tRNA synthetase (TrpRS) catalyzes tryptophanyl-tRNAtrp formation. At concentrations exceeding tryptophan, tryptamine inhibits TrpRS. This leads in tryptophanyl-tRNA deficiency and synthesis of aberrant proteins.

View Article and Find Full Text PDF

Upregulation of group IIA phospholipase A(2) (sPLA(2)-IIA) correlates with prostate tumor progression suggesting prooncogenic properties of this protein. Here, we report data on expression of three different sPLA(2) isozymes (groups IIA, V, and X) in normal (PrEC) and malignant (DU-145, PC-3, and LNCaP) human prostate cell lines. All studied cell lines constitutively expressed sPLA(2)-X, whereas sPLA(2)-V transcripts were identified only in malignant cells.

View Article and Find Full Text PDF

The neuropathological hallmarks of Alzheimer's disease (AD) and other taupathies include neurofibrillary tangles and plaques. Despite the fact that only 2-10% of AD cases are associated with genetic mutations, no nontransgenic or metabolic models have been generated to date. The findings of tryptophanyl-tRNA synthetase (TrpRS) in plaques of the AD brain were reported recently by the authors.

View Article and Find Full Text PDF

Tryptophanyl-tRNA synthetase (TrpRS) is an interferon-induced phosphoprotein with autoantigenic and cytokine activities detected in addition to its canonical function in tRNA aminoacylation. The availability of monoclonal antibodies (mAbs) specific for TrpRS is important for development of tools for TrpRS monitoring. A molecular characterization of two mAbs raised in mice, using purified, enzymatically active bovine TrpRS as the inoculating antigen, is presented in this report.

View Article and Find Full Text PDF