Front Cell Infect Microbiol
September 2023
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections.
View Article and Find Full Text PDFAppl Environ Microbiol
March 2022
Phenazines are a class of bacterially produced redox-active natural antibiotics that have demonstrated potential as a sustainable alternative to traditional pesticides for the biocontrol of fungal crop diseases. However, the prevalence of bacterial resistance to agriculturally relevant phenazines is poorly understood, limiting both the understanding of how these molecules might shape rhizosphere bacterial communities and the ability to perform a risk assessment for off-target effects. Here, we describe profiles of susceptibility to the antifungal agent phenazine-1-carboxylic acid (PCA) across more than 100 bacterial strains isolated from a wheat field where PCA producers are indigenous and abundant.
View Article and Find Full Text PDFBackground: The Aotearoa New Zealand takahē (Porphyrio hochstetteri), once thought to be extinct, is a nationally threatened flightless rail under intensive conservation management. While there has been previous research into disease-related microbes in takahē, little is known about the microbes present in the gastrointestinal tract. Given the importance of gut-associated microbes to herbivore nutrition and immunity, knowledge of these communities is likely to be of considerable conservation value.
View Article and Find Full Text PDFSecondary metabolites profoundly affect microbial physiology, metabolism and stress responses. Increasing evidence suggests that these molecules can modulate microbial susceptibility to commonly used antibiotics; however, secondary metabolites are typically excluded from standard antimicrobial susceptibility assays. This may in part account for why infections by diverse opportunistic bacteria that produce secondary metabolites often exhibit discrepancies between clinical antimicrobial susceptibility testing results and clinical treatment outcomes.
View Article and Find Full Text PDFBacterial opportunistic human pathogens frequently exhibit intrinsic antibiotic tolerance and resistance, resulting in infections that can be nearly impossible to eradicate. We asked whether this recalcitrance could be driven by these organisms' evolutionary history as environmental microbes that engage in chemical warfare. Using Pseudomonas aeruginosa as a model, we demonstrate that the self-produced antibiotic pyocyanin (PYO) activates defenses that confer collateral tolerance specifically to structurally similar synthetic clinical antibiotics.
View Article and Find Full Text PDFBacteria in soils encounter redox-active compounds, such as phenazines, that can generate oxidative stress, but the mechanisms by which different species tolerate these compounds are not fully understood. Here, we identify two transcription factors, ActR and SoxR, that play contrasting yet complementary roles in the tolerance of the soil bacterium Agrobacterium tumefaciens to phenazines. We show that ActR promotes phenazine tolerance by proactively driving expression of a more energy-efficient terminal oxidase at the expense of a less efficient alternative, which may affect the rate at which phenazines abstract electrons from the electron transport chain (ETC) and thereby generate reactive oxygen species.
View Article and Find Full Text PDFThe critically endangered kākāpō, an herbivorous parrot endemic to New Zealand, is subject to intensive management to increase its population size. Key aspects of the management program include supplementary feeding and translocation of kākāpō between different predator-free islands to optimize the genetic composition of the breeding populations. While these practices have helped boost the kākāpō population, their impact on the kākāpō fecal microbiota is uncertain.
View Article and Find Full Text PDFThe amicoumacins belong to a class of dihydroisocoumarin natural products and display antibacterial, antifungal, anticancer, and anti-inflammatory activities. Amicoumacins are the pro-drug activation products of a bacterial nonribosomal peptide-polyketide hybrid biosynthetic pathway and have been isolated from Gram-positive Bacillus and Nocardia species. Here, we report the stimulation of a "cryptic" amicoumacin pathway in the entomopathogenic Gram-negative bacterium Xenorhabdus bovienii, a strain not previously known to produce amicoumacins.
View Article and Find Full Text PDFThe distribution and absorption of ingested protein was characterized within a colony of Podocoryna carnea when a single polyp was fed. Observations were conducted at multiple spatial and temporal scales at three different stages of colony ontogeny with an artificial food item containing Texas Red conjugated albumin. Food pellets were digested and all tracer absorbed by digestive cells within the first 2-3 hours post-feeding.
View Article and Find Full Text PDF