Publications by authors named "Elena K Bauer"

Background: We evaluated O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET and MRI for early response assessment in recurrent glioma patients treated with lomustine-based chemotherapy.

Methods: Thirty-six adult patients with WHO CNS grade 3 or 4 gliomas (glioblastoma, 69%) at recurrence (median number of recurrences, 1; range, 1-3) were retrospectively identified. Besides MRI, serial FET PET scans were performed at baseline and early after chemotherapy initiation (not later than two cycles).

View Article and Find Full Text PDF

O-(2-[F]fluoroethyl)-L-tyrosine (FET) is a widely used amino acid tracer for positron emission tomography (PET) imaging of brain tumours. This retrospective study and survey aimed to analyse our extensive database regarding the development of FET PET investigations, indications, and the referring physicians' rating concerning the role of FET PET in the clinical decision-making process. Between 2006 and 2019, we performed 6534 FET PET scans on 3928 different patients against a backdrop of growing demand for FET PET.

View Article and Find Full Text PDF

Background: The phase 2 REGOMA trial suggested an encouraging overall survival benefit in glioblastoma patients at first relapse treated with the multikinase inhibitor regorafenib. Here, we evaluated the efficacy and side effects of regorafenib in a real-life setting.

Methods: From 2018 to 2021, 30 patients with progressive WHO CNS grade 3 or 4 gliomas treated with regorafenib (160 mg/day; first 3 weeks of each 4-week cycle) with individual dose adjustment depending on toxicity were retrospectively identified.

View Article and Find Full Text PDF

In light of increasing health-care costs, higher medical expenses should be justified socioeconomically. Therefore, we calculated the effectiveness and cost effectiveness of PET using the radiolabeled amino acid -(2-F-fluoroethyl)-l-tyrosine (F-FET) compared with conventional MRI for early identification of responders to adjuvant temozolomide chemotherapy. A recently published study in isocitrate dehydrogenase wild-type glioma patients suggested that F-FET PET parameter changes predicted a significantly longer survival already after 2 cycles whereas MRI changes were not significant.

View Article and Find Full Text PDF

Anatomical cross-sectional imaging methods such as contrast-enhanced MRI and CT are the standard for the delineation, treatment planning, and follow-up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non-invasively provide detailed insights into the molecular and metabolic features of meningiomas. These techniques are usually based on MRI, e.

View Article and Find Full Text PDF

Following local and systemic treatment of gliomas, the differentiation between glioma relapse and treatment-related changes such as pseudoprogression or radiation necrosis using conventional MRI is limited. To overcome this limitation, various amino acid PET tracers such as -[2-(F)-fluoroethyl]-L-tyrosine (FET) are increasingly used and provide valuable additional clinical information. We here report neuroimaging findings in a clincally symptomatic 53-year-old woman with a recurrent anaplastic oligodendroglioma with MRI findings highly suspicious for tumor progression.

View Article and Find Full Text PDF

In glioma patients, complete resection of the contrast-enhancing portion is associated with improved survival, which, however, cannot be achieved in a considerable number of patients. Here, we evaluated the prognostic value of O-(2-[F]-fluoroethyl)-L-tyrosine (FET) PET in not completely resectable glioma patients with minimal or absent contrast enhancement before temozolomide chemoradiation. Dynamic FET PET scans were performed in 18 newly diagnosed patients with partially resected (n = 8) or biopsied (n = 10) IDH-wildtype astrocytic glioma before initiation of temozolomide chemoradiation.

View Article and Find Full Text PDF

Purpose: The CeTeG/NOA-09 phase III trial demonstrated a significant survival benefit of lomustine-temozolomide chemoradiation in patients with newly diagnosed glioblastoma with methylated O-methylguanine-DNA methyltransferase (MGMT) promoter. Following lomustine-temozolomide chemoradiation, late and prolonged pseudoprogression may occur. We here evaluated the value of amino acid PET using O-(2-[F]fluoroethyl)-l-tyrosine (FET) for differentiating pseudoprogression from tumor progression.

View Article and Find Full Text PDF

Radiomics allows the extraction of quantitative features from medical images such as CT, MRI, or PET, thereby providing additional, potentially relevant diagnostic information for clinical decision-making. Because the computation of these features is performed highly automated on medical images acquired during routine follow-up, radiomics offers this information at low cost. Further, the radiomics features can be used alone or combined with other clinical or histomolecular parameters to generate predictive or prognostic mathematical models.

View Article and Find Full Text PDF

Currently, a reliable diagnostic test for differentiating pseudoprogression from early tumor progression is lacking. We explored the potential of O-(2-[F]fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) radiomics for this clinically important task. Thirty-four patients (isocitrate dehydrogenase (IDH)-wildtype glioblastoma, 94%) with progressive magnetic resonance imaging (MRI) changes according to the Response Assessment in Neuro-Oncology (RANO) criteria within the first 12 weeks after completing temozolomide chemoradiation underwent a dynamic FET PET scan.

View Article and Find Full Text PDF

Purpose: Integrated histomolecular diagnostics of gliomas according to the World Health Organization (WHO) classification of 2016 has refined diagnostic accuracy and prediction of prognosis. This study aimed at exploring the prognostic value of dynamic O-(2-[F]-fluoroethyl)-L-tyrosine (FET) PET in newly diagnosed, histomolecularly classified astrocytic gliomas of WHO grades III or IV.

Methods: Before initiation of treatment, dynamic FET PET imaging was performed in patients with newly diagnosed glioblastoma (GBM) and anaplastic astrocytoma (AA).

View Article and Find Full Text PDF

Purpose: Areas of contrast enhancement (CE) on MRI are usually the target for resection or radiotherapy target volume definition in glioblastomas. However, the solid tumour mass may extend beyond areas of CE. Amino acid PET can detect parts of the tumour that show no CE.

View Article and Find Full Text PDF

Mutations in the isocitrate dehydrogenase (IDH mut) gene have gained paramount importance for the prognosis of glioma patients. To date, reliable techniques for a preoperative evaluation of IDH genotype remain scarce. Therefore, we investigated the potential of O-(2-[F]fluoroethyl)-L-tyrosine (FET) PET radiomics using textural features combined with static and dynamic parameters of FET uptake for noninvasive prediction of IDH genotype.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate the potential of combined textural feature analysis of contrast-enhanced MRI (CE-MRI) and static O-(2-[F]fluoroethyl)-L-tyrosine (FET) PET for the differentiation between local recurrent brain metastasis and radiation injury since CE-MRI often remains inconclusive.

Methods: Fifty-two patients with new or progressive contrast-enhancing brain lesions on MRI after radiotherapy (predominantly stereotactic radiosurgery) of brain metastases were additionally investigated using FET PET. Based on histology ( = 19) or clinicoradiological follow-up ( = 33), local recurrent brain metastases were diagnosed in 21 patients (40%) and radiation injury in 31 patients (60%).

View Article and Find Full Text PDF

Background: The goal of this prospective study was to compare the value of both conventional MRI and O-(2-F-fluoroethyl)-L-tyrosine (FET) PET for response evaluation in glioblastoma patients treated with bevacizumab plus lomustine (BEV/LOM) at first progression.

Methods: After chemoradiation with concomitant and adjuvant temozolomide, 21 IDH wild-type glioblastoma patients at first progression (age range, 33-75 years; MGMT promoter unmethylated, 81%) were treated with BEV/LOM. Contrast-enhanced MRI and FET-PET scans were performed at baseline and after 8-10 weeks.

View Article and Find Full Text PDF

Since its introduction in 2016, the revision of the World Health Organization (WHO) classification of central nervous system tumors has already changed the diagnostic and therapeutic approach in glial tumors. Blurring the lines between entities formerly labelled as "high-grade" or "low-grade", molecular markers define distinct biological subtypes with different clinical course. This new classification raises the demand for non-invasive imaging methods focusing on depicting metabolic processes.

View Article and Find Full Text PDF

Purpose: The molecular features isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion have gained major importance for both glioma typing and prognosis and have, therefore, been integrated in the World Health Organization (WHO) classification in 2016. The aim of this study was to characterize static and dynamic O-(2-F-fluoroethyl)-L-tyrosine (F-FET) PET parameters in gliomas with or without IDH mutation or 1p/19q co-deletion.

Methods: Ninety patients with newly diagnosed and untreated gliomas with a static and dynamic F-FET PET scan prior to evaluation of tumor tissue according to the 2016 WHO classification were identified retrospectively.

View Article and Find Full Text PDF