Publications by authors named "Elena Jouravleva"

Background: This Site Feasibility Task Force convened to assess the complex and burdensome process of site feasibility in clinical trials. The objective was to create mutual understanding of challenges and provide suggestions for improving collaboration among sponsors, contract research organizations (CROs), and sites.

Methods: The task force was composed of representatives from sponsors, CROs and sites (43 % Sites, 20 % Site Networks, 10 % Small/mid-size sponsors, 10 % Small/mid-size CROs, 10 % Large sponsors, 7 % Large CROs).

View Article and Find Full Text PDF

In this work, we investigate the role of folding/unfolding equilibrium in protein aggregation and formation of a gel network. Near the neutral pH and at a low buffer ionic strength, the formation of the gel network around unfolding conditions prevents investigations of protein aggregation. In this study, by deploying the fact that in lysozyme solutions the time of folding/unfolding is much shorter than the characteristic time of gelation, we have prevented gelation by rapidly heating the solution up to the unfolding temperature (~80 °C) for a short time (~30 min.

View Article and Find Full Text PDF

The need for quality control during the manufacturing and distribution of biopharmaceuticals is becoming increasingly necessary. At present, detecting drug degradation through the monitoring of active factor aggregation is accomplished through "invasive" techniques, such as size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), and so on. Unfortunately, these analytical methods require sampling the drug by opening the drug container that renders the remaining drug unusable regardless of the outcome of the test.

View Article and Find Full Text PDF

The emergence and rapid rise to dominance of Vibrio cholerae O139 in India and Bangladesh in 1992 led to the consideration that choleraphage might serve as both a selective mechanism and a means for horizontal transmission of genetic information. A filamentous phage '493' from O139 strain AJ27-493 has been purified and partially characterized. The phage was inactive on classical biotype V.

View Article and Find Full Text PDF