Publications by authors named "Elena Ishow"

In the field of tissue engineering, determining the mechanical properties of hydrogels is a key prerequisite to develop biomaterials mimicking the properties of the extracellular matrix. In mechanobiology, understanding the relationships between the mechanical properties and physiological state of cells is also essential. Time-dependent mechanical characterization of these soft materials is commonly achieved by atomic force microscopy (AFM) experiments in liquid environment.

View Article and Find Full Text PDF

Functional organic nanomaterials are nowadays largely spread in the field of nanomedicine. In situ modulation of their morphology is thus expected to considerably impact their interactions with the surroundings. In this context, photoswitchable nanoparticles that are manufactured, amenable to extensive disassembling upon illumination in the visible, and reversible reshaping under UV exposure.

View Article and Find Full Text PDF

Introduction: Most current anti-cancer therapies are associated with major side effects due to a lack of tumor specificity. Appropriate vectorization of drugs using engineered nanovectors is known to increase local concentration of therapeutic molecules in tumors while minimizing their side effects. Mesothelin (MSLN) is a well-known tumor associated antigen overexpressed in many malignancies, in particular in malignant pleural mesothelioma (MPM), and various MSLN-targeting anticancer therapies are currently evaluated in preclinical and clinical assays.

View Article and Find Full Text PDF

The impact of nanoparticle surface chemistry on cell interactions and especially cell uptake has become evident over the last few years in nanomedicine. Since PEG polymers have proved to be ideal tools for attaining stealthiness and favor escape from the mononuclear phagocytotic system, the accurate control of their geometry is of primary importance and can be achieved through reversible addition-fragmentation transfer (RAFT) polymerization. In this study, we demonstrate that the residual groups of the chain transfer agents (CTAs) introduced in the main chain exert a significant impact on the cellular internalization of functionalized nanoparticles.

View Article and Find Full Text PDF

Nanoparticles (NPs) are used for drug delivery with enhanced selectivity and reduced side-effect toxicity in cancer treatments. Based on the literature, the influence of the NPs mechanical and geometrical properties on their cellular uptake has been studied through experimental investigations. However, due to the difficulty to vary the parameters independently in such a complex system, it remains hard to efficiently conclude on the influence of each one of them on the cellular internalization of a NP.

View Article and Find Full Text PDF

Highly concentrated dispersions of fluorescent organic nanoparticles (FONs), broadly used for optical tracking, bioimaging and drug delivery monitoring, are obtained using a newly designed micromixer chamber involving high impacting flows. Fine size tuning and narrow size distributions are easily obtained by varying independently the flow rates of the injected fluids and the concentration of the dye stock solution. The flash nanoprecipitation process employed herein is successfully applied to the fabrication of bicomposite FONs designed to allow energy transfer.

View Article and Find Full Text PDF

We present a H Nuclear Magnetic Resonance (NMR) relaxometry experimental investigation of two series of magnetic nanoparticles, constituted of a maghemite core with a mean diameter d = 17 ± 2.5 nm and 8 ± 0.4 nm, respectively, and coated with four different negative polyelectrolytes.

View Article and Find Full Text PDF

The development of fluorescent organic nanoparticles, serving as bioimaging agents or drug cargos, represents a buoyant field of investigations. Nevertheless, their ulterior fate and structural integrity after cell uptake remain elusive. Toward this aim, we have elaborated original photoactive organic nanoparticles ( ∼ 35-50 nm wide) with an off-on signal upon cellular internalization.

View Article and Find Full Text PDF

Bright supramolecular fluorescent organic nanoassemblies (FONs), based on strongly polar red-emissive benzothiadiazole fluorophores containing acidic units, are fabricated to serve as theranostic tools with large colloidal stability in the absence of a polymer or surfactant. High architectural cohesion is ensured by the multiple hydrogen-bonding networks, reinforced by the dipolar and hydrophobic interactions developed between the dyes. Such interactions are harnessed to ensure high payload encapsulation and efficient trapping of hydrophobic and hydrogen-bonding drugs like doxorubicin, as shown by steady state and time-resolved measurements.

View Article and Find Full Text PDF

The field of optical bioimaging has considerably flourished with the advent of sophisticated microscopy techniques and ultra-bright fluorescent tools. Fluorescent organic nanoparticles (FONs) have thus recently appeared as very attractive labels for their high payload, absence of cytotoxicity and eventual biodegradation. Nevertheless, their bioconjugation to target specific receptors with high imaging contrast is scarcely performed.

View Article and Find Full Text PDF

Controlling the interactions of functional nanostructures with water and biological media represents high challenges in the field of bioimaging applications. Large contrast at low doses, high colloidal stability in physiological conditions, the absence of cell cytotoxicity, and efficient cell internalization represent strong additional needs. To achieve such requirements, we report on high-payload magnetofluorescent architectures made of a shell of superparamagnetic iron oxide nanoparticles tightly anchored around fluorescent organic nanoparticles.

View Article and Find Full Text PDF

High-density nanoarchitectures, endowed with simultaneous fluorescence and contrast properties for MRI and TEM imaging, have been obtained using a simple self-assembling strategy based on supramolecular interactions between non-doped fluorescent organic nanoparticles (FON) and superparamagnetic nanoparticles. In this way, a high-payload core-shell structure FON@mag has been obtained, protecting the hydrophobic fluorophores from the surroundings as well as from emission quenching by the shell of magnetic nanoparticles. Compared to isolated nanoparticles, maghemite nanoparticles self-assembled as an external shell create large inhomogeneous magnetic field, which causes enhanced transverse relaxivity and exacerbated MRI contrast.

View Article and Find Full Text PDF

We demonstrate herein the fabrication of small molecule-based OLEDs where four organic layers from the hole- to the electron-transporting layers have successively been deposited by using an all-solution process. The key feature of the device relies on a novel photopolymerizable red-emitting material, made of small fluorophores substituted with two acrylate units, and displaying high-quality film-forming properties as well as high emission quantum yield as nondoped thin films. Insoluble emissive layers were obtained upon UV irradiation using low illumination doses, with no further need of postcuring.

View Article and Find Full Text PDF

Polyethylene micro-sized wear particles released from orthopedic implants promote inflammation and osteolysis; however, less is known about the bioactivity of polyethylene nanosized wear particles released from the last generation of polymer-bearing surfaces. We aim to assess the internalization of fluorescent polyethylene-like nanoparticles by both human macrophages and osteoclasts and also, to determine their effects in osteoclastogenesis in vitro. Human macrophages and osteoclasts were incubated with several ratios of fluorescent polyethylene-like nanoparticles between 1 and 72 h, and 4 h, 2, 4, 6, and 9 days, respectively.

View Article and Find Full Text PDF

Strongly solvatochromic fluorophores are devised, containing alkyl chains and enable to self-assemble as very bright fluorescent organic nanoparticles (FONs) in water (Φf = 0.28). The alkyl chains impart each fluorophore with strongly hydrophobic surroundings, causing distinct emission colors between FONs where the fluorophores are associated, and their disassembled state.

View Article and Find Full Text PDF

Photoinduced orientation in a series of molecular glasses made of small push-pull azo derivatives is dynamically investigated for the first time. Birefringence measurements at 632.8 nm are conducted with a temporal resolution of 100 ms to probe the fast rate of the azo orientation induced under polarized light and its temporal stability over several consecutive cycles.

View Article and Find Full Text PDF

The fabrication of hybrid core-shell nanoassemblies involving a nondoped azo photochromic core coated with a dense shell of gold nanoparticles is reported to investigate the influence of localized plasmons onto the azo core photoisomerization. Photochromic organic nanoparticles, regarded as a novel class of high-density photoswitchable nanomaterials, are first elaborated upon precipitation in water of push-pull azo molecules, containing sulfur-terminated units to chelate gold nanoparticles. Photoisomerization studies of the azo nanoparticles reveal significantly higher E → Z photoconversion yields and Z → E thermal back relaxation rate constants compared to those of dyes processed as thin films and in solution, respectively.

View Article and Find Full Text PDF

Innovative nanostructures made of a high payload of fluorophores and superparamagnetic nanoparticles (NPs) have simply been fabricated upon self-assembling in a two-step process. The resulting hybrid supraparticles displayed a dense shell of iron oxide nanoparticles tightly attached through an appropriate polyelectrolyte to a highly emissive non-doped nanocore made of more than 10 small organic molecules. Cooperative magnetic dipole interactions arose due to the closely packed magnetic NPs at the nanoarchitecture surface, causing enhanced NMR transverse relaxivity.

View Article and Find Full Text PDF

This article reports on a comprehensive study of the two-photon absorption (2PA) properties of six novel push-pull octupolar triarylamine compounds as a function of the nature of the electron-withdrawing groups. These compounds present an octupolar structure consisting of a triarylamine core bearing two 3,3'-bis(trifluoromethyl)phenyl arms and a third group with varying electron-withdrawing strength (H < CN < CHO < NO2 < Cyet < Vin). The 2PA cross-sections, measured by using the femtosecond open-aperture Z-scan technique, showed significant enhancement from 45 up to 125 GM for the lowest energy band and from 95 up to 270 GM for the highest energy band.

View Article and Find Full Text PDF

A series of dipolar triphenylaminoazo derivatives, with largely distinct charge transfer and glass transition temperatures, has been synthesized. Their photomigration capability in the solid state to form surface relief gratings (SRGs) under interferential illumination has been investigated with respect to their photochromic properties and showed a prevailing influence of the bulkiness of the azo substituent. The azo mass transfer was utilized to efficiently photoalign 200 nm polystyrene nanoparticles along the SRG crests, which were initially deposited on nonirradiated azo surfaces.

View Article and Find Full Text PDF

A series of emitting push-pull triarylamine derivatives, models of their widely used homologues in photonics and organic electronics, was investigated by steady-state and time-resolved spectroscopy. Their structural originality stems from the sole change of the electron-withdrawing substituent X (-H: 1, -CN: 2, -NO2: 3, -CHC(CN)2: 4), giving rise to efficient emission tuning from blue to red upon increasing the X electron-withdrawing character. All compounds are highly fluorescent in alkanes.

View Article and Find Full Text PDF

Phosphonic and carboxylic fluorescent nanoparticles have been fabricated by direct reprecipitation in water. Their fluorescence properties strongly differ from those of the corresponding esters where strong H-bonding formation is prohibited. Comparative experiments between the two acid derivatives, differing only in their acid functions while keeping the same alkyl chain, have evidenced the peculiar behavior of the phosphonic acid derivative compared to its carboxylic analog.

View Article and Find Full Text PDF

Bifunctional molecules that combine independent push-pull fluorophores and azo photochromes have been synthesized to create fluorescent structures upon light-induced migration in neat thin films. Their photochromic and emissive properties have been systematically investigated and interpreted in light of those of the corresponding model compounds. Fluorescence lifetimes and photoisomerization and fluorescence quantum yields have been determined in toluene solution.

View Article and Find Full Text PDF

The photoinduced ring-closure/ring-opening reactions of a series of bis-dithienylethene derivatives, as free ligands and Zn(II)-complexes, are investigated by resorting to theoretical (time-dependent density functional theory) and kinetic analyses in solution. The originality of the system stems from the tunability of the photoreaction quantum yields and conversion yields as a function of the electronic structure. The latter could be varied by modifying the electron-donating character of the DTE-end substituents L(a-d) (o,o) (a, D = H; b, D = OMe; c, D = NMe(2); d, D = NBu(2)) and/or the Lewis character of the metal ion center L(a-d)ZnX(2) (o,o) (L(a-c), X = OAc; L(d), X = Cl).

View Article and Find Full Text PDF

Organic nanoparticles made of a push-pull triarylamine dye with an average diameter of 60 nm, were prepared by reprecipitation. We study their photophysical properties by a combination of photothermal and fluorescence microscopy. Photothermal contrast provides a quantitative measure of the number of absorbers.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjhnh3r7758589l6ag6ltgq5rh4iu12fn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once