The widespread presence of microplastics in multiple environmental compartments has largely been demonstrated. Assessing the ecological risk that microplastics pose is, at the present stage, hindered due to methodical differences. Moreover, different methods hamper meaningful comparisons between studies and data on microplastics <300 μm is scarce.
View Article and Find Full Text PDFMicroplastics have been predominantly studied in marine environments compared to freshwater systems. However, the number of studies analyzing microplastic concentrations in water and sediment within lakes and rivers are increasing and are of utmost importance as freshwaters are major pathways for plastics to the oceans. To allow for an adequate risk assessment, detailed knowledge concerning plastic concentrations in different environmental compartments of freshwaters are necessary.
View Article and Find Full Text PDFStudies on macroplastic pollution in freshwater systems are rare compared to the marine environment. Nevertheless, freshwater systems are worthy to be equally investigated as they are pathways of plastic to the ocean and lakes may act as (temporary) sinks. The aim of this study was to identify sources for plastics and influences on its distribution in a limnic environment.
View Article and Find Full Text PDFA variety of methods concerning the identification of microplastics in environmental samples exist. While visual identification is often used, implemented easily, and cost-efficient but implying biased results, spectroscopic or chromatographic approaches are reliable but time-consuming and need specific equipment. Nile red staining is an available alternative and complement method for identifying microplastics.
View Article and Find Full Text PDFMicroplastic contamination in surface waters of the South Funen Archipelago in Denmark was assessed. Therefore, ten manta trawls were conducted in June 2015. Moreover, 31 low-volume bulk samples were taken to evaluate, whether consistent results in comparison to the net-based approach can be obtained.
View Article and Find Full Text PDFTo extent the understanding on microplastics in the marine environment we performed a case study at four beaches on the Isle of Rügen considering abundance and spatial distribution of microplastics in beach sediments. For the analysis, density separation via a glass elutriation column was implemented. In advance, efficiencies were tested for two polymers, being not buoyant in water.
View Article and Find Full Text PDFThe abundance, weight and composition of marine debris were determined at the northwest coast of the Isle of Rügen in 2015. A total number of 1115 macrolitter items were registered, resulting in an abundance of 304±88.96 items per 100m of beach length and therefore being greater than the abundances found for other beaches at the Baltic Sea.
View Article and Find Full Text PDF