Publications by authors named "Elena Heng"

Natural products encompass a diverse range of compounds with high impact applications in consumer care, agriculture and most notably, therapeutics. However, despite the expansive chemical repertoire indicated in genomic information of microbes, only a small subset can be obtained under laboratory conditions. To increase accessible chemical space and realize Nature's full chemical potential, a multi-pronged genetic- and cultivation-based strategy has been employed to activate and upregulate natural product biosyntheses in native and heterologous strains.

View Article and Find Full Text PDF

Background: Streptomyces is renowned for its robust biosynthetic capacity in producing medically relevant natural products. However, the majority of natural products biosynthetic gene clusters (BGCs) either yield low amounts of natural products or remain cryptic under standard laboratory conditions. Various heterologous production hosts have been engineered to address these challenges, and yet the successful activation of BGCs has still been limited.

View Article and Find Full Text PDF

In recent years, CRISPR-Cas toolboxes for editing have rapidly accelerated natural product discovery and engineering. However, Cas efficiencies are oftentimes strain-dependent, and the commonly used Cas9 (SpCas9) is notorious for having high levels of off-target toxicity effects. Thus, a variety of Cas proteins is required for greater flexibility of genetic manipulation within a wider range of strains.

View Article and Find Full Text PDF

Natural products possess significant therapeutic potential but remain underutilized despite advances in genomics and bioinformatics. While there are approaches to activate and upregulate natural product biosynthesis in both native and heterologous microbial strains, a comprehensive strategy to elicit production of natural products as well as a generalizable and efficient method to interrogate diverse native strains collection, remains lacking. Here, we explore a flexible and robust integrase-mediated multi-pronged activation approach to reliably perturb and globally trigger antibiotics production in actinobacteria.

View Article and Find Full Text PDF

Background: Nature has provided unique molecular scaffolds for applications including therapeutics, agriculture, and food. Due to differences in ecological environments and laboratory conditions, engineering is often necessary to uncover and utilize the chemical diversity. Although we can efficiently activate and mine these often complex 3D molecules, sufficient production of target molecules for further engineering and application remain a considerable bottleneck.

View Article and Find Full Text PDF

With the advent of rapid automated identification of biosynthetic gene clusters (BGCs), genomics presents vast opportunities to accelerate natural product (NP) discovery. However, prolific NP producers, , are exceptionally GC-rich (>80%) and highly repetitive within BGCs. These pose challenges in sequencing and high-quality genome assembly which are currently circumvented intensive sequencing.

View Article and Find Full Text PDF

Streptomyces are an important source and reservoir of natural products with diverse applications in medicine, agriculture, and food. Engineered Streptomyces strains have also proven to be functional chassis for the discovery and production of bioactive compounds and enzymes. However, genetic engineering of Streptomyces is often laborious and time-consuming.

View Article and Find Full Text PDF

Notonesomycin A is a 32-membered bioactive glycosylated macrolactone known to be produced by Streptomyces aminophilus subsp. notonesogenes 647-AV1 and S. aminophilus DSM 40186.

View Article and Find Full Text PDF

Using an established CRISPR-Cas mediated genome editing technique for streptomycetes, we explored the combinatorial biosynthesis potential of the auroramycin biosynthetic gene cluster in Streptomyces roseosporous. Auroramycin is a potent anti-MRSA polyene macrolactam. In addition, auroramycin has antifungal activities, which is unique among structurally similar polyene macrolactams, such as incednine and silvalactam.

View Article and Find Full Text PDF

Application of the well-characterized Streptococcus pyogenes CRISPR-Cas9 system in actinomycetes streptomycetes has enabled high-efficiency multiplex genome editing and CRISPRi-mediated transcriptional regulation in these prolific bioactive metabolite producers. Nonetheless, SpCas9 has its limitations and can be ineffective depending on the strains and target sites. Here, we built and tested alternative CRISPR-Cas constructs based on the standalone pCRISPomyces-2 editing plasmid.

View Article and Find Full Text PDF

Silent biosynthetic gene clusters represent a potentially rich source of new bioactive compounds. We report the discovery, characterization, and biosynthesis of a novel doubly glycosylated 24-membered polyene macrolactam from a silent biosynthetic gene cluster in Streptomyces roseosporus by using the CRISPR-Cas9 gene cluster activation strategy. Structural characterization of this polyketide, named auroramycin, revealed a rare isobutyrylmalonyl extender unit and a unique pair of amino sugars.

View Article and Find Full Text PDF

Here we report an efficient CRISPR-Cas9 knock-in strategy to activate silent biosynthetic gene clusters (BGCs) in streptomycetes. We applied this one-step strategy to activate multiple BGCs of different classes in five Streptomyces species and triggered the production of unique metabolites, including a novel pentangular type II polyketide in Streptomyces viridochromogenes. This potentially scalable strategy complements existing activation approaches and facilitates discovery efforts to uncover new compounds with interesting bioactivities.

View Article and Find Full Text PDF