Publications by authors named "Elena Hecht"

Vesicular P2X receptors are known to facilitate secretion and activation of pulmonary surfactant in the alveoli of the lungs. P2X receptors are expressed in the membrane of lamellar bodies (LBs), large secretory lysosomes that store lung surfactant in alveolar type II epithelial cells, and become inserted into the plasma membrane after exocytosis. Subsequent activation of P2X receptors by adenosine triphosphate (ATP) results in local fusion-activated cation entry (FACE), facilitating fusion pore dilation, surfactant secretion, and surfactant activation.

View Article and Find Full Text PDF

The mechanically induced release of adenosine-5'-triphosphate (ATP) from osteoblastic cells (MC3T3-E1) was measured in real time. A stretching device integrated into scanning electrochemical microscopy was developed to apply controlled mechanical strain to MC3T3-E1 cells. For ATP secretion, a stepwise yet uniform mechanical stress was imposed onto MC3T3-E1 cells.

View Article and Find Full Text PDF

Two fundamental mechanisms within alveoli are essential for lung function: regulated fluid transport and secretion of surfactant. Surfactant is secreted via exocytosis of lamellar bodies (LBs) in alveolar type II (ATII) cells. We recently reported that LB exocytosis results in fusion-activated cation entry (FACE) via P2X₄ receptors on LBs.

View Article and Find Full Text PDF

Hybrid atomic force microscopy (AFM)-fluorescence microscopy (FM) investigation of exocytosis in lung epithelial cells (ATII cells) allows the detection of individual exocytic events by FM, which can be simultaneously correlated to structural changes in individual cells by AFM. Exocytosis of lamellar bodies (LBs) represents a slow form of exocytosis found in many non-neuronal cells. Exocytosis of LBs, following stimulation with adenosine-5'-triphosphate (ATP) and phorbol 12-myristate 13-acetate (PMA), results in a cation influx via P2X(4) receptors at the site of LB fusion with the plasma membrane (PM), which should induce a temporary increase in cell height/volume.

View Article and Find Full Text PDF

Secretion of vesicular contents by exocytosis is a fundamental cellular process. Increasing evidence suggests that post-fusion events play an important role in determining the composition and quantity of the secretory output. In particular, regulation of fusion pore dilation and closure is considered a key regulator of the post-fusion phase.

View Article and Find Full Text PDF

Scanning probe techniques enable direct imaging of morphology changes associated with cellular processes at life specimen. Here, glutaraldehyde-fixed and living alveolar type II (ATII) cells were investigated by atomic force microscopy (AFM), and the obtained topographical data were correlated with results obtained by scanning electron microscopy (SEM) and confocal microscopy (CM). We show that low-force contact mode AFM at glutaraldehyde-fixed cells provides complementary results to SEM and CM.

View Article and Find Full Text PDF