Antimony sulfide (SbS) and antimony selenide (SbSe) compounds have attracted considerable attention for applications in different optoelectronic devices due to their notable optical and electrical properties, and due to the strong anisotropy of these properties along different crystallographic directions. However, the efficient use of these promising compounds still requires significant efforts in characterization of their fundamental properties. In the present study, Raman scattering and spectroscopic ellipsometry were used to investigate the vibrational and optical properties of SbSe and SbS bulk polycrystals grown by the modified Bridgman method.
View Article and Find Full Text PDFResistivity, ρ(T), and magnetoresistance (MR) are investigated in the CuZnSnGeS single crystals, obtained by the chemical vapor transport method, between x = 0-0.70, in the temperature range of T ~ 50-300 K in pulsed magnetic field of B up to 20 T. The Mott variable-range hopping (VRH) conductivity is observed within broad temperature intervals, lying inside that of T ~ 80-180 K for different x.
View Article and Find Full Text PDFRecent development of the thin film solar cells, based on quaternary compounds, has been focused on the Ge contain compounds and their solid solutions. However, for effective utilization of CuZnGeS, deeper investigations of its transport properties are required. In the present manuscript, we investigate resistivity, ρ (T), magnetoresistance and Hall effect in p-type CuZnGeS single crystals in pulsed magnetic fields up to 20 T.
View Article and Find Full Text PDF