Publications by authors named "Elena Gostjeva"

Cellular heterogeneity of aortic valves complicates the mechanistic evaluation of the calcification processes in calcific aortic valve disease (CAVD), and animal disease models are lacking. In this study, we identify a disease-driver population (DDP) within valvular interstitial cells (VICs). Through stepwise single-cell analysis, phenotype-guided omic profiling, and network-based analysis, we characterize the DDP fingerprint as CD44CD29CD59CD73CD45 and discover potential key regulators of human CAVD.

View Article and Find Full Text PDF

We evaluated the long-term effects of sirolimus on three different cell models, cultured in physiological conditions mimicking sirolimus-eluted stent, in order to clarify the effectiveness of sirolimus in blocking cell proliferation and survival. Three cells lines (WPMY-1 myofibroblasts, HT-29 colorectal adenocarcinoma, and U2OS osteosarcoma) were selected and growth in 10 ml of Minimum Essential Medium for 5 weeks with serial dilutions of sirolimus. The number of colonies and the number of cells per colony were counted.

View Article and Find Full Text PDF

Objective: In systemic sclerosis (SSc), a persistent tissue repair process leads to progressive fibrosis of the skin and internal organs. The role of mesenchymal stem cells (MSCs), which characteristically initiate and regulate tissue repair, has not been fully evaluated. We undertook this study to investigate whether dividing metakaryotic MSCs are present in SSc skin and to examine whether exposure to the disease microenvironment activates MSCs and leads to transdifferentiation.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) exacerbating vascular disease poses a major challenge to nephrology. Surgically placed vascular fistulas, as an aid to hemodialysis prior to kidney transplant, have extended many lives, while post-surgical restenosis closure of the fistula by smooth muscle cells affects many lives. When post-surgical restenosis is developed, palliative measures are almost always surgical: there are no effective drug treatments.

View Article and Find Full Text PDF

Background: Calcifications of atherosclerotic plaques represent a controversial issue as they either lead to the stabilization or rupture of the lesion. However, the cellular key players involved in the progression of the calcified plaques have not yet been described. The primary reason for this lacuna is that decalcification procedures impair protein and nucleic acids contained in the calcified tissue.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) with multilineage potential and anti-inflammatory property can be isolated from different human tissues, representing promising candidates in regenerative medicine. Despite the common criteria of characterization, many factors contribute to MSC heterogeneity (i.e.

View Article and Find Full Text PDF

Bell shaped nuclei of metakaryotic cells double their DNA content during and after symmetric and asymmetric amitotic fissions rather than in the separate, pre-mitotic S-phase of eukaryotic cells. A parsimonious hypothesis was tested that the two anti-parallel strands of each chromatid DNA helix were first segregated as ssDNA-containing complexes into sister nuclei then copied to recreate a dsDNA genome. Metakaryotic nuclei that were treated during amitosis with RNase A and stained with acridine orange or fluorescent antibody to ssDNA revealed large amounts of ssDNA.

View Article and Find Full Text PDF

Adult age-specific colorectal cancer incidence rates increase exponentially from maturity, reach a maximum, then decline in extreme old age. Armitage and Doll (1) postulated that the exponential increase resulted from "n" mutations occurring throughout adult life in normal "cells at risk" that initiated the growth of a preneoplastic colony in which subsequent "m" mutations promoted one of the preneoplastic "cells at risk" to form a lethal neoplasia. We have reported cytologic evidence that these "cells at risk" are fetal/juvenile organogenic, then preneoplastic metakaryotic stem cells.

View Article and Find Full Text PDF
Article Synopsis
  • - Metakaryotic cells and syncytia with bell-shaped nuclei exhibit both symmetrical and asymmetrical division processes that are relevant to stem cell development across various tissue types.
  • - Research using fluorescence in situ hybridization reveals that mononuclear metakaryotic cells have 23 centromeric and telomeric regions, while syncytial nuclei during early human development can have either 23 or 46 telomeric regions.
  • - The study suggests that the end-joining of telomeres in metakaryotic stem cells may play a critical role in guiding cell development, and mistakes in this process could potentially lead to cancer.
View Article and Find Full Text PDF

A non-eukaryotic, metakaryotic cell with large, open mouthed, bell shaped nuclei represents an important stem cell lineage in fetal/juvenile organogenesis in humans and rodents. each human bell shaped nucleus contains the diploid human DNA genome as tested by quantitative Feulgen DNA cytometry and fluorescent in situ hybridization with human pan-telomeric, pan-centromeric and chromosome specific probes. From weeks approximately 5-12 of human gestation the bell shaped nuclei are found in organ anlagen enclosed in sarcomeric tubular syncytia.

View Article and Find Full Text PDF
Article Synopsis
  • A study employing MAMA assays on bronchial tracts of nonsmokers identified multiple clusters of specific point mutations in genes related to cancer, showing similar outcomes in smokers.
  • Analysis covered a vast number of tracheal-bronchial epithelial cells, revealing significant mutation levels across various anatomical sectors without notable differences due to smoking status or age.
  • The findings suggest that these mutations likely stem from high-frequency errors in stem cells during fetal-juvenile development, indicating varying risks for tumor development in individuals based on mutation frequencies.
View Article and Find Full Text PDF

Analysis of historical age-specific colorectal cancer rates, present day age-specific colonic adenoma prevalence and the few reports of direct measurements of genetic change in human tissues as a function of age in adults have led to a new set of hypotheses about carcinogenesis. A key observation, that the calculated rate of growth of preneoplasia is equal to the calculated growth rate of the juvenile colon, suggested that tumor initiation blocks the developmental step by which growing juvenile stem cells are transformed into or replaced by adult maintenance stem cells. In this hypothesis the slowly growing adenomatous polyps would simply be patches of highly organized juvenile tissue modified by the mechanical constraints of surrounding nongrowing adult tissue.

View Article and Find Full Text PDF