Publications by authors named "Elena Geiser"

Besides enzymatic conversions, many eukaryotic metabolic pathways also involve transport proteins that shuttle molecules between subcellular compartments, or into the extracellular space. Fungal itaconate production involves two such transport steps, involving an itaconate transport protein (Itp), and a mitochondrial tricarboxylate transporter (Mtt). The filamentous ascomycete Aspergillus terreus and the unicellular basidiomycete Ustilago maydis both produce itaconate, but do so via very different molecular pathways, and under very different cultivation conditions.

View Article and Find Full Text PDF

Background: Itaconate is getting growing biotechnological significance, due to its use as a platform compound for the production of bio-based polymers, chemicals, and novel fuels. Currently, is used for its industrial production. The Ustilaginaceae family of smut fungi, especially , has gained biotechnological interest, due to its ability to naturally produce this dicarboxylic acid.

View Article and Find Full Text PDF

Background: is known for its natural potential to produce a broad range of valuable chemicals, such as itaconate, from both industrial carbon waste streams and renewable biomass. Production of itaconate, and many other secondary metabolites, is induced by nitrogen limitation in . The clustered genes responsible for itaconate production have recently been identified, enabling the development of new expression tools that are compatible with biotechnological processes.

View Article and Find Full Text PDF

RK089 has been found recently as a good natural malic acid producer from glycerol. This strain has previously undergone adaptive laboratory evolution for enhanced substrate uptake rate resulting in the strain TZ1. Medium optimization and investigation of process parameters enabled titers and rates that are able to compete with those of organisms overexpressing major parts of the underlying metabolic pathways.

View Article and Find Full Text PDF

Background: The family of Ustilaginaceae is known for their capability to naturally produce industrially valuable chemicals from different carbon sources. Recently, several Ustilaginaceae were reported to produce organic acids from glycerol, which is the main side stream in biodiesel production.

Results: In this study, we present   as new production organism for itaconate synthesis from glycerol.

View Article and Find Full Text PDF

Itaconic acid (IA) has a high potential to be used as a bio-based platform chemical and its biocatalytic production via fermentation has significantly improved within the last decade. Additionally downstream processing using reactive extraction (RE) was described, potentially enabling a more efficient sustainable bioprocess producing IA. The bottleneck to overcome is the connection of up- and downstream processing, caused by lack of biocompatibility of the RE systems and direct application to fermentation broth.

View Article and Find Full Text PDF

Some smut fungi of the family Ustilaginaceae produce itaconate from glucose. De novo genome sequencing of nine itaconate-producing Ustilaginaceae revealed genome sizes between 19 and 25 Mbp. Comparison to the itaconate cluster of U.

View Article and Find Full Text PDF

The Ustilaginaceae family of smut fungi, especially Ustilago maydis, gained biotechnological interest over the last years, amongst others due to its ability to naturally produce the versatile bio-based building block itaconate. Along with itaconate, U. maydis also produces 2-hydroxyparaconate.

View Article and Find Full Text PDF

Unlabelled: The microbial conversion of plant biomass to valuable products in a consolidated bioprocess could greatly increase the ecologic and economic impact of a biorefinery. Current strategies for hydrolyzing plant material mostly rely on the external application of carbohydrate-active enzymes (CAZymes). Alternatively, production organisms can be engineered to secrete CAZymes to reduce the reliance on externally added enzymes.

View Article and Find Full Text PDF

Itaconic acid is an important biomass-derived chemical building block but has also recently been identified as a metabolite produced in mammals, which has antimicrobial activity. The biosynthetic pathway of itaconic acid has been elucidated in the ascomycetous fungus Aspergillus terreus and in human macrophages. In both organisms itaconic acid is generated by decarboxylation of the tricarboxylic acid (TCA) cycle intermediate cis-aconitate.

View Article and Find Full Text PDF

Background: Ustilaginaceae (belonging to the smut fungi) are commonly known for their plant pathogenicity. Although these microbes lead to yield reduction of cereal production, they can also have an economically positive side. Ustilaginaceae naturally produce a versatile range of value-added chemicals with potential applications in the food, pharmaceutical, and chemical industry.

View Article and Find Full Text PDF

Background: The utilization of raw biomass components such as cellulose or hemicellulose for the production of valuable chemicals has attracted considerable research interest in recent years. One promising approach is the application of microorganisms that naturally convert biomass constituents into value added chemicals. One of these organisms--Ustilago maydis--can grow on xylan, the second most abundant polysaccharide in nature, while at the same time it produces chemicals of biotechnological interest.

View Article and Find Full Text PDF