In this study, we developed an osteoplastic material based on collagen-fibronectin hydrogel impregnated with siRNA molecules targeting glycogen synthase kinase 3β (GSK3β), which inhibits the osteogenic differentiation of mesenchymal stem cells. The hydrogel impregnated with polyplexes containing siRNA GSK3β and polyethylenimine has been shown to have no cytotoxic effect: there was no statistically significant change in the cell's viability after 7 days of incubation in its presence compared to the control group. On days 2 and 7, an increase in the level of expression of markers of osteogenic differentiation was observed, which confirms the osteoinductive qualities of the material.
View Article and Find Full Text PDFThere is a current clinical need for the development of bone void fillers and bioactive bone graft substitutes. The use of mesenchymal stem cells (MSCs) that are seeded into 3D scaffolds and induce bone generation in the event of MSCs osteogenic differentiation is highly promising. Since calcium ions and phosphates promote the osteogenic differentiation of MSCs, the use of the calcium complexes of phosphate-containing polymers is highly prospective in the development of osteogenic scaffolds.
View Article and Find Full Text PDFThere are several types of mitochondrial cytopathies, which cause a set of disorders, arise as a result of mitochondria's failure. Mitochondria's functional disruption leads to development of physical, growing and cognitive disabilities and includes multiple organ pathologies, essentially disturbing the nervous and muscular systems. The origins of mitochondrial cytopathies are mutations in genes of nuclear DNA encoding mitochondrial proteins or in mitochondrial DNA.
View Article and Find Full Text PDFModelling of pathological processes in cells is one of the most sought-after technologies of the 21st century. Using models of such processes may help to study the pathogenetic mechanisms of various diseases. The aim of the present study was to analyse the literature, dedicated to obtaining and investigating cybrid models.
View Article and Find Full Text PDFMyocardial infarction is one of the clinical manifestations of coronary heart disease. In some cases, the cause of myocardial infarction may be atherosclerotic plaques which occurred in the human aorta. The association of mtDNA mutations with atherosclerotic lesions in human arteries was previously detected by our research group.
View Article and Find Full Text PDFIn addition to external factors, such as exercise, food and the environment, genetic predisposition makes great contribution to the development of metabolic disorders and cardiovascular disease. This review is aimed to examine the genetic basis of complex metabolic disorders conventionally described as "metabolic syndrome" (MetS), with the special focus on currently known mutations in the nuclear and mitochondrial genomes, which are associated with both the individual components of MetS and combinations thereof, and also on the studies of the relationship of MetS phenotype as a binary trait. The defects in the mitochondrial genome should be considered as one of the possible genetic reasons leading to MetS.
View Article and Find Full Text PDFMutations of mtDNA, due to their higher frequency of occurrence compared to nuclear DNA mutations, are the most promising biomarkers for assessing predisposition of the occurrence and development of atherogenesis. The aim of the present article was an analysis of correlation of several mitochondrial genome mutations with carotid atherosclerosis. Leukocytes from blood of study participants from Moscow polyclinics were used as research material.
View Article and Find Full Text PDF