Porous materials are ideal hosts to fabricate high sensitivity devices. Their large specific area and the possibility to modify the type and the strength of the matrix-analyte interactions allow the realization of sensors with finely tailored characteristics. In this article, we investigate how mass transport across the nanoporous structure influences the response due to the non-specific signal by comparing flow-through versus flow-over geometries.
View Article and Find Full Text PDFAqueous solutions of naked nanotubes with Ti concentration up to 10 mM are obtained by hydrothermal synthesis followed by extensive ultrasound treatment. The morphology, surface characteristics, and solution behavior of the solubilized nanotubes are investigated. The time course of the solubilization process driven by ultrasound follows a first-order kinetic law and is mediated by the competition between Na(+) and H(+) for surface sites.
View Article and Find Full Text PDFStable aqueous solutions of undecylenic-acid-grafted silicon nanocrystals (Si-nc) were prepared. The time evolution of the photoluminescence properties of these hydrophilic silicon nanocrystals has been followed on different timescales (hours and days). On a short timescale (hours), Si-nc tend to agglomerate while the PL lineshape and intensity are stable.
View Article and Find Full Text PDFJ Colloid Interface Sci
June 2011
Silicon nanocrystals were made hydrophilic by 10-undecenoic acid grafting and were then coated with sodium deoxycholate, a detergent-like compound belonging to the bile acid class which is crucial for absorption of lipids in the small intestine. The resulting silicon nanocrystals have an average diameter of 3-5 nm, can be dispersed in aqueous solutions and show stable photoluminescence. Coating with non-biological surfactants, which are dangerous for cell safety, was investigated for comparison.
View Article and Find Full Text PDF