Publications by authors named "Elena Favero"

Coenzyme Q10 (CoQ10) is a lipophilic antioxidant agent that plays a crucial role in the mitochondrial electron transport chain. The neuroprotective role of CoQ10, countering mitochondrial dysfunction and oxidative stress, suggests its potential as an adjuvant for ocular neurodegenerative diseases linked to retinal cell loss. However, despite its promising properties, ocular barriers pose challenges for effective delivery.

View Article and Find Full Text PDF

The characterization of the structure of ferritin in solution and the arrangement of iron stored in its cavity are intriguing subjects for both cell biology and applied science, since the protein structure, stability, and easiness of production make it an ideal tool for biomedical applications. We characterized the ferritin structure over a wide range of iron loadings by visible light, X-ray, and neutron scattering techniques. We found that the arrangement of iron ions inside the protein cage resulted in a more disposable arrangement at lower loading factors and then in a crystalline structure.

View Article and Find Full Text PDF

Melanoma is an aggressive form of skin cancer with elevated propensity to metastasize. One of the major critical issues in the treatment of oncological patients is represented by the development of toxicity and resistance to the available therapies. Great progress has been made in the field of nanotechnologies to limit the unwanted effects of anti-cancer treatments.

View Article and Find Full Text PDF

Biodegradable nanocarriers possess enormous potential for use as drug delivery systems that can accomplish controlled and targeted drug release, and a wide range of nanosystems have been reported for the treatment and/or diagnosis of various diseases and disorders. Of the various nanocarriers currently available, liposomes and polymer nanoparticles have been extensively studied and some formulations have already reached the market. However, a combination of properties to create a single hybrid system can give these carriers significant advantages, such as improvement in encapsulation efficacy, higher stability, and active targeting towards specific cells or tissues, over lipid or polymer-based platforms.

View Article and Find Full Text PDF
Article Synopsis
  • Tendon disorders are painful and debilitating, often involving tears at the tendon-to-bone interface (TBI), which is crucial but challenging to treat due to high mechanical stress in that area.
  • Current treatment usually requires surgery, which poses risks like tissue weakening and joint mechanics changes, highlighting the need for better solutions.
  • This work developed 3D scaffolds using thermoplastic polyurethane combined with chondroitin sulfate and caseinophosphopeptides, showing excellent mechanical properties and supporting tenocyte growth, while being safe for in vivo use and effective for TBI regeneration.
View Article and Find Full Text PDF

Background: Clay minerals are nanomaterials that have recently been recognized as enabling excipients that can promote cell adhesion, proliferation, and differentiation. When nanoclays are loaded in a 3D polymeric nanostructure, the cell-substrate interaction is enhanced, and other bioactive properties are optimized.

Purpose: In this study, hectorite (HEC)- and montmorillonite (MMT)-doped polymeric scaffolds were explored for the treatment of deep and chronic skin lesions.

View Article and Find Full Text PDF

The upper airways represent the point of entrance from where Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection spreads to the lungs. In the present work, α-tocopheryl-polyethylene-glycol succinate (TPGS) micelles loaded with cyclosporine A (CSA) were developed for nasal administration to prevent or treat the viral infection in the very first phases. The behavior of the micelles in presence of simulated nasal mucus was investigated in terms of stability and mucopenetration rate, evidencing long-term stability and fast diffusion across the glycoproteins matrix.

View Article and Find Full Text PDF

The peptidyl-prolyl cis/trans isomerase Pin1 positively regulates numerous cancer-driving pathways, and it is overexpressed in several malignancies, including high-grade serous ovarian cancer (HGSOC). The findings that all-trans retinoic acid (ATRA) induces Pin1 degradation strongly support that ATRA treatment might be a promising approach for HGSOC targeted therapy. Nevertheless, repurposing ATRA into the clinics for the treatment of solid tumors remains an unmet need mainly due to the insurgence of resistance and its ineffective delivery.

View Article and Find Full Text PDF

Deformable liposomes represent valuable drug carriers for cutaneous administration. Nevertheless, the fluid lipid membrane can favor the drug leakage during storage. Proliposomes may represent a suitable strategy to solve this issue.

View Article and Find Full Text PDF

Tendon disorders are common medical conditions, which can be greatly debilitating as they are often accompanied by great pain and inflammation. The techniques used nowadays for the treatment of chronic tendon injuries often involve surgery. However, one critical aspect of this procedure involves the scar tissue, characterized by mechanical properties that vary from healthy tissue, rendering the tendons inclined to reinjury or rupture.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) is a rare cancer characterized by a global increasing incidence. Extracellular vesicles (EV) contribute to many of the hallmarks of cancer through transfer of their cargo molecules. The sphingolipid (SPL) profile of intrahepatic CCA (iCCA)-derived EVs was characterized by liquid chromatography-tandem mass spectrometry analysis.

View Article and Find Full Text PDF

Periodontal regeneration is extremely limited and unpredictable due to structural complications, as it requires the simultaneous restoration of different tissues, including cementum, gingiva, bone, and periodontal ligament. In this work, spray-dried microparticles based on green materials (polysaccharides - gums - and a protein - silk fibroin) are proposed to be implanted in the periodontal pocket as 3D scaffolds during non-surgical treatments, to prevent the progression of periodontal disease and to promote the healing in mild periodontitis. Arabic or xanthan gum have been associated to silk fibroin, extracted from Bombyx mori cocoons, and loaded with lysozyme due to its antibacterial properties.

View Article and Find Full Text PDF

Tendon disorders are common medical conditions that could lead to significant disability, pain, healthcare costs, and a loss of productivity. Traditional approaches require long periods of treatment, and they largely fail due to the tissues weakening and the postoperative alterations of the normal joint mechanics. To overcome these limitations, innovative strategies for the treatment of these injuries need to be explored.

View Article and Find Full Text PDF

Purpose: Vitamin E (VitE) may be classified in "the first line of defense" against the formation of reactive oxygen species. Its inclusion in nanoemulsions (NEs) is a promising alternative to increase its bioavailability. The aim of this study was to compare O/W NEs including VitE based on Almond or Neem oil, showing themselves antioxidant properties.

View Article and Find Full Text PDF

The enthesis is an extremely specific region, localized at the tendon-bone interface (TBI) and made of a hybrid connection of fibrocartilage with minerals. The direct type of enthesis tissue is commonly subjected to full laceration, due to the stiffness gradient between the soft tissues and hard bone, and this often reoccurs after surgical reconstruction. For this purpose, the present work aimed to design and develop a tubular scaffold based on pullulan (PU) and chitosan (CH) and intended to enhance enthesis repair.

View Article and Find Full Text PDF

Nanoscale echogenic bubbles (NBs), can be used as a theranostic platform for the localized delivery of encapsulated drugs. However, the generation of NBs is challenging, because they have lifetimes as short as milliseconds in solution. The aim of this work has been the optimization of a preparation method for the generation of stable NBs, characterized by measuring: a) acoustic efficiency, b) nano-size, to ensure passive tumour targeting, c) stability during storage and after injection and d) ability to entrap drugs.

View Article and Find Full Text PDF

Chronic wounds (resulting from underlying disease, metabolic disorders, infections, trauma, and even tumours) pose significant health problems. In this work, microparticles, based on polysaccharides (maltodextrin or dextran) and amino acids, and doped with antibacterial nanoparticles (CuO or ZnO NPs) are designed. Smart nano-in-microparticles with a hierarchical 3D structure are developed.

View Article and Find Full Text PDF

Phenylketonuria (PKU) is a metabolic disorder connected to an excess of phenylalanine (Phe) in the blood and tissues, with neurological consequences. The disease's molecular bases seem to be related to the accumulation of Phe at the cell membrane surface. Radiological outcomes in the brain demonstrate decreased water diffusivity in white matter, involving axon dysmyelination of not yet understood origin.

View Article and Find Full Text PDF

The comprehension of pathogenetic mechanisms in tauopathy-associated neurodegenerative diseases can be improved by the knowledge of the biochemical and biophysical features of mutated tau proteins. Here, we used the full-length, wild-type tau, the V363A and V363I mutated species, associated with pathology, and the P301L mutated tau as a benchmark. Using several techniques, including small-angle X-ray scattering, atomic force microscopy, thioflavin T binding, and electrophoretic separation, we compared their course from intrinsically disordered monomers in solution to early-stage recruitment in complexes and then aggregates of increasing size over long periods up to the asymptotic aggregative behavior of full-length tau proteins.

View Article and Find Full Text PDF

The spontaneous healing of a tendon laceration results in the formation of scar tissue, which has lower functionality than the original tissue. Moreover, chronic non-healing tendon injuries frequently require surgical treatment. Several types of scaffolds have been developed using the tissue engineering approach, to complement surgical procedures and to enhance the healing process at the injured site.

View Article and Find Full Text PDF

The delivery of a dexamethasone formulation directly into the lung appears as an appropriate strategy to strengthen the systemic administration, reducing the dosage in the treatment of lung severe inflammations. For this purpose, a hyaluronic acid-dexamethasone formulation was developed, affording an inhalable reconstituted nanosuspension suitable to be aerosolized. The physico-chemical and biopharmaceutical properties of the formulation were tested: size, stability, loading of the spray-dried dry powder, reconstitution capability upon redispersion in aqueous media.

View Article and Find Full Text PDF

Synthetic plastic oligomers can interact with the cells of living organisms by different ways. They can be intentionally administered to the human body as part of nanosized biomedical devices. They can be inhaled by exposed workers, during the production of multicomponent, polymer-based nanocomposites.

View Article and Find Full Text PDF

Nanoparticles are promising mediators to enable nasal systemic and brain delivery of active compounds. However, the possibility of reaching therapeutically relevant levels of exogenous molecules in the body is strongly reliant on the ability of the nanoparticles to overcome biological barriers. In this work, three paradigmatic nanoformulations vehiculating the poorly soluble model drug simvastatin were addressed: (i) hybrid lecithin/chitosan nanoparticles (LCNs), (ii) polymeric poly-ε-caprolactone nanocapsules stabilized with the nonionic surfactant polysorbate 80 (PCL_P80), and (iii) polymeric poly-ε-caprolactone nanocapsules stabilized with a polysaccharide-based surfactant, i.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is one of the most used biopolymers in the development of drug delivery systems, due to its biocompatibility, biodegradability, non-immunogenicity and intrinsic-targeting properties. HA specifically binds to CD44; this property combined to the EPR effect could provide an option for reinforced active tumor targeting by nanocarriers, improving drug uptake by the cancer cells via the HA-CD44 receptor-mediated endocytosis pathway. Moreover, HA can be easily chemically modified to tailor its physico-chemical properties in view of specific applications.

View Article and Find Full Text PDF

The physiological and pathological roles of nascent amyloid beta (Aβ) monomers are still debated in the literature. Their involvement in the pathological route of Alzheimer's Disease (AD) is currently considered to be the most relevant, triggered by their aggregation into structured oligomers, a toxic species. Recently, it has been suggested that nascent Aβ, out of the amyloidogenic pathway, plays a physiological and protective role, especially in the brain.

View Article and Find Full Text PDF