Publications by authors named "Elena Dneprovskaia"

Kinases are known to regulate fundamental processes in cancer including tumor proliferation, metastasis, neovascularization, and chemoresistance. Accordingly, kinase inhibitors have been a major focus of drug development, and several kinase inhibitors are now approved for various cancer indications. Typically, kinase inhibitors are selected via high-throughput screening using catalytic kinase domains at low ATP concentration, and this process often yields ATP mimetics that lack specificity and/or function poorly in cells where ATP levels are high.

View Article and Find Full Text PDF

Background: The synthesis of novel benzotriazine heterocycles was developed independently around the same time by Bischler, Bamberger and Arndt. Over the years, different groups have reported the synthesis of benzotriazine based compounds.

Objective: This literature review gives an update on recent benzotriazine compounds and their applications.

View Article and Find Full Text PDF

Phosphatidylinositol 3-kinases (PI3Ks) are key elements in the signaling cascades that lie downstream of many cellular receptors. In particular, PI3K delta and gamma isoforms contribute to inflammatory cell recruitment and subsequent activation. For this reason, in a series of preclinical studies, we tested the potential of a recently developed small-molecule inhibitor of these two isoforms, TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol], as a form of anti-inflammatory therapy for respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD).

View Article and Find Full Text PDF

Chronic myelogenous leukemia (CML) is a hematological stem cell disorder caused by increased and unregulated growth of myeloid cells in the bone marrow, and the accumulation of excessive white blood cells. Abelson tyrosine kinase (ABL) is a non-receptor tyrosine kinase involved in cell growth and proliferation and is usually under tight control. However, 95% of CML patients have the ABL gene from chromosome 9 fused with the breakpoint cluster (BCR) gene from chromosome 22, resulting in a short chromosome known as the Philadelphia chromosome.

View Article and Find Full Text PDF

In studies aimed toward identifying effective and safe inhibitors of kinase signaling cascades that underlie ischemia/reperfusion (I/R) injury, we synthesized a series of pteridines and pyridopyrazines. The design strategy was inspired by the examination of naturally occurring PI3K inhibitors such as wortmannin and quercetin, and building a pharmacophore-based model used for optimization. Structural modifications led to hybrid molecules which incorporated aminopyrimidine and aminopyridine moieties with ATP mimetic characteristics into the pharmacophore motifs to modulate kinase affinity and selectivity.

View Article and Find Full Text PDF

Although phosphoinositide 3-kinases (PI3Ks) play beneficial pro-cell survival roles during tissue ischemia, some isoforms (gamma and delta) paradoxically contribute to the inflammation that damages these same tissues upon reperfusion. We therefore considered the possibility that selectively inhibiting proinflammatory PI3K isoforms during the reperfusion phase could ultimately limit overall tissue damage seen in ischemia/reperfusion injuries such as myocardial infarction. Panreactive and isoform-restricted PI3K inhibitors were identified by screening a novel chemical family; molecular modeling studies attributed isoform specificity based on rotational freedom of substituent groups.

View Article and Find Full Text PDF

We describe the identification of [7-(2,6-dichlorophenyl)-5-methylbenzo [1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-ylethoxy)phenyl]amine (3), a potent, orally active Src inhibitor with desirable PK properties, demonstrated activity in human tumor cell lines and in animal models of tumor growth.

View Article and Find Full Text PDF

We report the discovery and preliminary SAR studies of a series of structurally novel benzotriazine core based small molecules as inhibitors of Src kinase. To the best of our knowledge, benzotriazine template based compounds have not been reported as kinase inhibitors. The 3-(2-(1-pyrrolidinyl)ethoxy)phenyl analogue (43) was identified as one of the most potent inhibitors of Src kinase.

View Article and Find Full Text PDF