Unlabelled: The dosimetry evaluation for the selective internal radiation therapy is currently performed assuming a uniform activity distribution, which is in contrast with literature findings. A 2D microscopic model of the perfused liver was developed to evaluate the effect of two different Y microspheres distributions: i) homogeneous partitioning with the microspheres equally distributed in the perfused liver, and ii) tumor-clustered partitioning where the microspheres distribution is inferred from the patient specific images.
Methods: Two subjects diagnosed with liver cancer were included in this study.
Hypoplastic left heart syndrome is a complex congenital heart disease characterised by the underdevelopment of the left ventricle normally treated with a three-stage surgical repair. In this study, a multiscale closed-loop cardio-circulatory model is created to reproduce the pre-operative condition of a patient suffering from such pathology and virtual surgery is performed. Firstly, cardio-circulatory parameters are estimated using a fully closed-loop cardio-circulatory lumped parameter model.
View Article and Find Full Text PDFNext generation bioreactors are being developed to generate multiple human cell-based tissue analogs within the same fluidic system, to better recapitulate the complexity and interconnection of human physiology [1, 2]. The effective development of these devices requires a solid understanding of their interconnected fluidics, to predict the transport of nutrients and waste through the constructs and improve the design accordingly. In this work, we focus on a specific model of bioreactor, with multiple input/outputs, aimed at generating osteochondral constructs, i.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Stent modeling represents a challenging task from both the theoretical and numerical viewpoints, due to its multi-physics nature and to the complex geometrical configuration of these devices. In this light, dimensional model reduction enables a comprehensive geometrical and physical description of stenting at affordable computational costs. In this work, we aim at reviewing dimensional model reduction of stent mechanics and drug release.
View Article and Find Full Text PDFComplex congenital heart disease characterized by the underdevelopment of one ventricular chamber (single ventricle (SV) circulation) is normally treated with a three-stage surgical repair. This study aims at developing a multiscale computational framework able to couple a patient-specific three-dimensional finite-element model of the SV to a patient-specific lumped parameter (LP) model of the whole circulation, in a closed-loop fashion. A sequential approach was carried out: (i) cardiocirculatory parameters were estimated by using a fully LP model; (ii) ventricular material parameters and unloaded geometry were identified by means of the stand-alone, three-dimensional model of the SV; and (iii) the three-dimensional model of SV was coupled to the LP model of the circulation, thus closing the loop and creating a multiscale model.
View Article and Find Full Text PDFAims: This study sought to investigate the possible influence of different bifurcation stenting techniques on stent deformation, physical stress, and drug elution using a virtual tool that includes structural, fluid dynamics and drug-eluting numerical models.
Methods And Results: A virtual bench test based on explicit dynamics modelling was used to simulate procedures on bifurcated coronary vessels performed according to three different stenting techniques: provisional side branch stenting, culotte, and Tryton-based culotte. Geometrical configurations obtained after virtual stenting simulations were used to perform fluid dynamics and drug elution analyses.
The treatment of coronary bifurcation lesions represents a challenge for the interventional cardiologists due to the lower rate of procedural success and the higher risk of restenosis. The advent of drug-eluting stents (DES) has dramatically reduced restenosis and consequently the request for re-intervention. The aim of the present work is to provide further insight about the effectiveness of DES by means of a computational study that combines virtual stent implantation, fluid dynamics and drug release for different stenting protocols currently used in the treatment of a coronary artery bifurcation.
View Article and Find Full Text PDFAim of this study is to develop a mechanical simulator (MS) reproducing cardiac wall kinematics [i.e., radial (R), longitudinal (L) and rotational (RT) motions] to test piezoelectric gyroscopic sensors (GS) that are able to measure cardiac torsion that has proved to be a sensitive index of cardiac performance.
View Article and Find Full Text PDF