Vitamin D transporter (DBP) is a multifunctional protein. Site-specific deglycosylation results in its conversion to group-specific component protein-derived macrophage activating factor (GcMAF), which is capable of activating macrophages. It has been shown that depending on precursor conversion conditions, the resulting GcMAF activates mouse peritoneal macrophages towards synthesis of either pro- (IL-1β, TNF-α-M1 phenotype) or anti-inflammatory (TGF-β, IL-10-M2 phenotype) cytokines.
View Article and Find Full Text PDFOncol Res
September 2024
Background: Immune checkpoint ligand-receptor interactions appear to be associated with multiple myeloma (MM) progression. Simultaneously, previous studies showed the possibility of PD-1 and TIM-3 expression on T cells upon stimulation with common γ-chain family cytokines and during homeostatic proliferation. The aim of the present work was to study the impact of homeostatic proliferation on the expansion of certain T cell subsets up-regulating PD-1 and TIM-3 checkpoint molecules.
View Article and Find Full Text PDF: The intranasal delivery of various neurotropic substances is considered a new attractive therapeutic approach for treating neuropathologies associated with neuroinflammation and altered regeneration. Specific language impairment (SLI) that arises as a result of damage to the cortical speech zones during the developmental period is one of the most common problems in preschool children, and it is characterized by persistent difficulties in the acquisition, understanding, and use of language. This study's objective is to evaluate the efficacy and safety of intranasal immunotherapy using the M2 macrophage secretome as a rich source of immunoregulatory and neurotrophic factors for the treatment of severe language impairment in children.
View Article and Find Full Text PDFMacrophages are the immune cells of high-immunological plasticity, which can exert both pro- and anti-inflammatory activity, as well as repolarize their phenotype to the opposite or neutral one. In this regard, M2 macrophages of the tumor-associated stroma (TAS) are a promising therapeutic target in treating malignant neoplasms. Using FACS assay, we have estimated the CD11b+/Ly-6G+/Ly-6C+ fraction of macrophages from the peritoneum and TAS in intact healthy mice and those with developed Lewis carcinoma, both untreated and treated according to Karanahan technology in combination with group-specific macrophage activator (GcMAF-RF).
View Article and Find Full Text PDFRecent studies demonstrated that myeloid-derived suppressor cells (MDSCs) are involved in the pathogenesis and progression of multiple myeloma (MM). Nevertheless, data on the quantitative and functional changes in MDSCs during standard MM treatment remain poorly understood. Here, we determined that monocytic MDSCs (M-MDSC; CD14HLA-DR) and granulocytic MDSCs (PMN-MDSC; LinHLA-DRCD33CD66b) in MM patients in remission following induction therapy (IT) were significantly increased, while early MDSCs (E-MDSCs; LinHLA-DRCD33CD66b) were decreased compared to the donor group.
View Article and Find Full Text PDFGroup-specific component macrophage-activating factor (GcMAF) is the vitamin D-binding protein (DBP) deglycosylated at Thr. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, DBP conversion to GcMAF, and the analysis of the activating potency of GcMAF was developed in this study.
View Article and Find Full Text PDFJ Immunol Res
September 2023
Macrophages are the major cells of innate immunity with a wide range of biological effects due to their great plasticity and heterogeneity. Macrophages play a key role in neuroregeneration following nervous tissue injury. However, the neuroregenerative potential of various macrophage phenotypes, including those polarized by efferocytosis, remains unexplored.
View Article and Find Full Text PDFApoptosis and subsequent removal of dead cells are an essential part of wound healing. Macrophages phagocytize apoptotic cells (efferocytosis) and contribute to the resolution of inflammation. However, their participation in fibrogenesis and the mechanisms of influence on this process remain unclear.
View Article and Find Full Text PDFTo overcome immune tolerance to cancer, the immune system needs to be exposed to a multi-target action intervention. Here, we investigated the activating effect of CpG oligodeoxynucleotides (ODNs), mesyl phosphoramidate CpG ODNs, anti-OX40 antibodies, and OX40 RNA aptamers on major populations of immunocompetent cells . Comparative analysis of the antitumor effects of vaccination with CpG ODNs and anti-OX40 antibodies, as well as several other combinations, such as mesyl phosphoramidate CpG ODNs and OX40 RNA aptamers, was conducted.
View Article and Find Full Text PDFBackground: Double-stranded fragmented extracellular DNA is a participant, inducer, and indicator of various processes occurring in the organism. When investigating the properties of extracellular DNA, the question regarding the specificity of exposure to DNA from different sources has always been raised. The aim of this study was to perform comparative assessment of biological properties of double-stranded DNA obtained from the human placenta, porcine placenta and salmon sperm.
View Article and Find Full Text PDFIt is well-established that double-stranded RNA (dsRNA) exhibits noticeable radioprotective and radiotherapeutic effects. The experiments conducted in this study directly demonstrated that dsRNA was delivered into the cell in its native form and that it induced hematopoietic progenitor proliferation. The 68 bp synthetic dsRNA labeled with 6-carboxyfluorescein (FAM) was internalized into mouse hematopoietic progenitors, c-Kit+ (a marker of long-term hematopoietic stem cells) cells and CD34+ (a marker of short-term hematopoietic stem cells and multipotent progenitors) cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2022
An ability of poorly differentiated cells of different genesis, including tumor stem-like cells (TSCs), to internalize extracellular double-stranded DNA (dsDNA) fragments was revealed in our studies. Using the models of Krebs-2 murine ascites carcinoma and EBV-induced human B-cell lymphoma culture, we demonstrated that dsDNA internalization into the cell consists of several mechanistically distinct phases. The primary contact with cell membrane factors is determined by electrostatic interactions.
View Article and Find Full Text PDFFront Genet
September 2022
Stem-like tumor cells of ascites carcinoma Krebs-2 and Epstein-Barr virus-induced B-lymphoma were shown to possess the innate capability of binding and internalizing the TAMRA-labeled double-stranded DNA (dsDNA) probe. The process of binding and internalizing is rather complicated and composed of the following successive stages: 1) initiating electrostatic interaction and contact of a negatively charged dsDNA molecule with a positively charged molecule(s) on the surface of a stem-like tumor cell; 2) binding of the dsDNA probe to a tumor stem cell surface protein(s) the formation of a strong chemical/molecular bond; and 3) the very internalization of dsDNA into the cell. Binding of DNA to cell surface proteins is determined by the presence of heparin/polyanion-binding sites within the protein structure, which can be competitively blocked by heparin and/or dextran sulfate, wherein heparin blocks only the binding, while dextran sulfate abrogates both binding and internalization.
View Article and Find Full Text PDFHeat flow generation and manipulation in nanometer-sized solids using light represents one of the up-and-coming tasks in thermonanophotonics. Enhanced light-matter interaction due to plasmon resonance permits metallic nanostructures to absorb light energy efficiently, and it results in extra optical heating. The net temperature increment of nanostructures is directly dependent on heat exchange with a thermostat.
View Article and Find Full Text PDFThe main problem related to the studies focusing on group-specific component protein-derived macrophage-activating factor (GcMAF) is the lack of clarity about changes occurring in different types of macrophages and related changes in their properties under the effect of GcMAF in various clinical conditions. We analyzed the antitumor therapeutic properties of GcMAF in a Lewis carcinoma model in two clinical conditions: untreated tumor lesion and tumor resorption after exposure to Karanahan therapy. GcMAF is formed during site-specific deglycosylation of vitamin D3 binding protein (DBP).
View Article and Find Full Text PDFPathol Oncol Res
June 2022
A new technology based on the chronometric administration of cyclophosphamide and complex composite double-stranded DNA-based compound, which is scheduled in strict dependence on interstrand crosslinks repair timing, and named "Karanahan", has been developed. Being applied, this technology results in the eradication of tumor-initiating stem cells and full-scale apoptosis of committed tumor cells. In the present study, the efficacy of this novel approach has been estimated in the model of Lewis carcinoma.
View Article and Find Full Text PDFIntroduction: , a cancer treatment technology aimed at eradicating tumor-initiating stem cells, has already proven effective in 7 tumor models. comprises the following procedures: (1) collecting surgical specimens, (2) determining the duration of the DNA repair process in tumor cells exposed to a cross-linking cytostatic agent, and (3) determining the time point, when cells, including tumor-initiating stem cells, are synchronized in the certain phase of the cell cycle after triple exposure to the cytostatic, becoming vulnerable for the terminal treatment, which is supposed to completely eliminate the rest of survived tumor-initiating stem cells. Determining these basic tumor properties allows to design the schedule for the administration of a cross-linking cytostatic and a complex composite DNA preparation.
View Article and Find Full Text PDFObjective: We describe experimental and theoretical premises of a powerful cancer therapy based on the combination of three approaches. These include (I) vaccination (intratumoral injections of CpG oligonucleotides and anti-OX40 antibody); (II) chronometric or metronomic low-dose cyclophosphamide (CMLD CP)-based chemotherapy; (III) cancer stem cell-eradicating therapy referred to as (from the Sanskrit ["source"] + ["to kill"]).
Background: In murine models, the first two approaches are particularly potent in targeting immunogenic tumors for destruction.
Int Immunopharmacol
November 2021
The aim of our prospective study was to assess recovery dynamics and functional characteristics of PD-1 and TIM-3 T cells in multiple myeloma (MM) patients following high-dose chemotherapy (HDCT) with autologous hematopoietic stem cell transplantation (AHSCT). Peripheral blood, autograft and bone marrow samples were obtained from 46 MM patients before conditioning, at the engraftment, following six and 12 months post-transplant. Frequencies of CD4 and CD8 T cells expressing PD-1 and TIM-3 and intracellular expression of Ki-67 and Granzyme B were evaluated.
View Article and Find Full Text PDFObjective: Glioma is a highly invasive tumor, frequently disposed in essential areas of the brain, which makes its surgical excision extremely difficult; meanwhile adjuvant therapy remains quite ineffective.
Methods: In the current report, a new therapeutic approach in curing malignant neoplasms has been performed on the U87 human glioblastoma model. This approach, termed "Karanahan", is aimed at the eradication of cancer stem cells (CSCs), which were recently shown to be capable of internalizing fragments of extracellular double-stranded DNA.
Background/aim: We compared the therapeutic efficacy of two recently developed experimental anticancer technologies: 1) in situ vaccination based on local immunotherapy with CpG oligonucleotides and anti-OX40 antibodies to activate antitumor immune response and 2) "Karanahan" technology [from the Sanskrit kāraṇa ('source') + han ('to kill')] based on the combined injection of cyclophosphamide and double-stranded DNA to eradicate cancer stem cells.
Materials And Methods: The anticancer approaches were compared on three types of mouse malignant tumors with different grades of immunogenicity: weakly immunogenic carcinoma Krebs-2, moderately immunogenic Lewis carcinoma, and highly immunogenic A20 В-cellular lymphoma.
Results: Our results indicated that in situ vaccination was the most effective against the highly immunogenic tumor А20.
Angiotensin I-converting enzyme (ACE, CD143) plays a crucial role in blood pressure regulation, vascular remodeling, and immunity. A wide spectrum of mAbs to different epitopes on the N and C domains of human ACE have been generated and used to study different aspects of ACE biology, including establishing a novel approach-conformational fingerprinting. Here we characterized a novel set of 14 mAbs, developed against human seminal fluid ACE.
View Article and Find Full Text PDFPurpose: The purpose of this study was to assess the capability of recombinant angiogenin isolated from yeasts to stimulate regenerative processes in the dermis of experimental animals.
Patients And Methods: Wistar rats were administered with recombinant angiogenin intracutaneously. Morphological examination of the skin and the assessment of the proliferative activity of the epidermal cells were carried out.
The aim of the present work was to evaluate counts and functional properties of PD-1 and TIM-3 T cells in peripheral blood (PB) and bone marrow (BM) of multiple myeloma (MM) patients following the induction therapy. Sixty patients were enrolled in the study, CD4 and CD8 T cells expressing PD-1 and TIM-3, intracellular production of IFNγ and intracellular expression of Granzyme B were assessed. Relative counts of the majority of circulating PD-1, TIM-3 and PD-1TIM-3 T cells were higher in MM patients with disease progression compared with individuals in remission.
View Article and Find Full Text PDFThe immunosuppressive properties of vascular endothelial growth factors (VEGFs) suggest a new role of angiogenic factors in T cell modulation in cancer and pregnancy. Most of VEGF effects on T cells are mediated through the VEGF receptor type 2 (VEGFR-2). This study aims to investigate the role of placental growth factor (PlGF) as a selective VEGFR-1 ligand in the modulation of human T cells functions.
View Article and Find Full Text PDF