Additive manufacturing of metallic parts by Selective Laser Melting (SLM) implies high temperature gradients and small volume of the melt bath. These conditions make the process scales close to those available for state-of-the-art massively parallel atomistic simulations. In the paper, the microscopic mechanisms responsible for the formation of primary microstructure during molten metal solidification are investigated using classical molecular dynamics (CMD).
View Article and Find Full Text PDFA new mechanism for controlling the microstructure of products in manufacturing processes based on selective laser melting is proposed. The mechanism relies on generation of high-intensity ultrasonic waves in the melt pool by complex intensity-modulated laser irradiation. The experimental study and numerical modeling suggest that this control mechanism is technically feasible and can be effectively integrated into the design of modern selective laser melting machines.
View Article and Find Full Text PDFIn this paper we report on the first toroidally focused 2D real-time laser-ultrasonic imaging system and a modified filtered back projection algorithm that can be used in the region near the waist of the astigmatic laser-ultrasonic probe beam. The system is capable of visualizing an acupuncture needle 0.2 mm in diameter located at ∼4 cm depth in water.
View Article and Find Full Text PDFThe paper describes a novel laser ultrasonic profilometry method which uses pulsed laser radiation for imaging of the surface profile of solid objects in optically opaque liquids by scattering of ultrasonic waves. Algorithms for the construction of laser ultrasonic images and for profile segmentation are presented. An experimental setup for profile measurements is described.
View Article and Find Full Text PDFThis article addresses theoretical and numerical investigation of image formation in photoacoustic (PA) imaging with complex-shaped concave sensor arrays. The spatial resolution and the size of sensitivity region of PA and laser ultrasonic (LU) imaging systems are assessed using sensitivity maps and spatial resolution maps in the image plane. This paper also discusses the relationship between the size of high-sensitivity regions and the spatial resolution of real-time imaging systems utilizing toroidal arrays.
View Article and Find Full Text PDF