Ferroptosis is a type of programmed cell death that differs from apoptosis, autophagy, and necrosis and is related to several physio-pathological processes, including tumorigenesis, neurodegeneration, senescence, blood diseases, kidney disorders, and ischemia-reperfusion injuries. Ferroptosis is linked to iron accumulation, eliciting dysfunction of antioxidant systems, which favor the production of lipid peroxides, cell membrane damage, and ultimately, cell death. Thus, signaling pathways evoking ferroptosis are strongly associated with those protecting cells against iron excess and/or lipid-derived ROS.
View Article and Find Full Text PDFTransient abnormal myelopoiesis (TAM) is a Down syndrome-related pre-leukaemic condition characterized by somatic mutations in the haematopoietic transcription factor GATA-1 that result in exclusive production of its shorter isoform (GATA-1). Given the common hallmark of altered miRNA expression profiles in haematological malignancies and the pro-leukaemic role of GATA-1, we aimed to search for miRNAs potentially able to modulate the expression of GATA-1 isoforms. Starting from an prediction of miRNA binding sites in the GATA-1 transcript, miR-1202 came into our sight as potential regulator of GATA-1 expression.
View Article and Find Full Text PDFThe erythroid transcriptional factor Krüppel-like factor 1 (KLF1) is a master regulator of erythropoiesis. Mutations that cause KLF1 haploinsufficiency have been linked to increased fetal hemoglobin (HbF) and hemoglobin A (HbA) levels with ameliorative effects on the severity of β-thalassemia. With the aim of determining if KLF1 gene variations might play a role in the modulation of β-thalassemia, in this study we screened 17 subjects showing a β-thalassemia-like phenotype with a slight or marked increase in HbA and HbF levels.
View Article and Find Full Text PDFFKBP51 is constitutively expressed by immune cells. As other FKBP family members, FKBP51 acts as a coreceptor for the natural products FK506 and rapamycin, which exhibit immunosuppressive effects. However, little is known about the intrinsic role of this large FKBP in the primary function of lymphocytes, that is, the adaptive immune response against foreign antigens, for example, pathogens.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) is a heterogeneous disease, whose presentation and clinical course are highly variable. Identification of novel prognostic factors may contribute to improving the CLL classification and providing indications for treatment options. The zinc finger protein ZNF224 plays a key role in cell transformation, through the control of apoptotic and survival pathways.
View Article and Find Full Text PDFAflatoxin B1 (AFB1), produced by fungi of the genus Aspergillus, is the most toxic and carcinogenic mycotoxin among the classes of aflatoxins. Previous research showed that AFB1 affects vitamin D receptor (VDR) expression. In the present study, integrated computational and experimental studies were carried out to investigate how AFB1 can interfere with Vitamin D signalling.
View Article and Find Full Text PDFWe herein report an innovative antisense approach based on Peptide Nucleic Acids (PNAs) to down-modulate CD5 expression levels in chronic lymphocytic leukemia (CLL). Using bioinformatics tools, we selected a 12-mer tract of the CD5 mRNA as the molecular target and synthesized the complementary and control PNA strands bearing a serine phosphate dipeptide tail to enhance their water solubility and bioavailability. The specific recognition of the 12-mer DNA strand, corresponding to the target mRNA sequence by the complementary PNA strand, was confirmed by non-denaturing polyacrylamide gel electrophoresis, thermal difference spectroscopy, circular dichroism (CD), and CD melting studies.
View Article and Find Full Text PDFThe transcription factor ZNF224 is a Kruppel-like zinc finger protein that consists of 707 amino acids and contains 19 tandemly repeated CH zinc finger domains that mediate DNA binding and protein-protein interactions. ZNF224 was originally identified as a transcriptional repressor of genes involved in energy metabolism, and it was demonstrated that ZNF224-mediated transcriptional repression needs the interaction of its KRAB repressor domain with the co-repressor KAP1 and its zinc finger domains 1-3 with the arginine methyltransferase PRMT5. Furthermore, the protein ZNF255 was identified as an alternative isoform of ZNF224 that possesses different domain compositions mediating distinctive functional interactions.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2021
Melanoma is one of the most immunogenic tumors and has the highest potential to elicit specific adaptive antitumor immune responses. Immune cells induce apoptosis of cancer cells either by soluble factors or by triggering cell-death pathways. Melanoma cells exploit multiple mechanisms to escape immune system tumoricidal control.
View Article and Find Full Text PDFDespite Glioblastoma (GBM) frequently expressing programmed cell death ligand-1 (PD-L1), treatment with anti-programmed cell death-1 (PD1) has not yielded brilliant results. Intratumor variability of PD-L1 can impact determination accuracy. A previous study on mouse embryonic fibroblasts (MEFs) reported a role for cyclin-D in control of PD-L1 expression.
View Article and Find Full Text PDFThe zinc finger protein ZNF224 plays a dual role in cancer, operating as both tumour suppressor and oncogenic factor depending on cellular and molecular partners. In this research we investigated the role of ZNF224 in melanoma, a highly invasive and metastatic cancer, and provided evidence for the involvement of ZNF224 in the TGF-β signalling as a mediator of the TGF-β pro-oncogenic function. Our results showed that ZNF224, whose expression increased in melanoma cell lines after TGF-β stimulation, potentiated the activation induced by TGF-β on its target genes involved in epithelial-mesenchymal transition (EMT).
View Article and Find Full Text PDFMyeloid leukemic cells are intrinsically under oxidative stress due to impaired reactive oxygen species (ROS) homeostasis, a common signature of several hematological malignancies. The present review focuses on the molecular mechanisms of aberrant ROS production in myeloid leukemia cells as well as on the redox-dependent signaling pathways involved in the leukemogenic process. Finally, the relevance of new chemotherapy options that specifically exert their pharmacological activity by altering the cellular redox imbalance will be discussed as an effective strategy to eradicate chemoresistant cells.
View Article and Find Full Text PDFZNF224 is a KRAB-zinc finger transcription factor that exerts a key tumor suppressive role in chronic myelogenous leukemia. In this study, we identify the receptor tyrosine kinase Axl as a novel target of ZNF224 transcriptional repression activity. Axl overexpression is found in many types of cancer and is frequently associated with drug resistance.
View Article and Find Full Text PDFThe transcription factor ZNF224 plays a key proapoptotic role in chronic myelogenous leukemia (CML), by modulating Wilms Tumor protein 1 (WT1) dependent apoptotic genes transcription. Recently, we demonstrated that Bcr-Abl signaling represses ZNF224 expression in Bcr-Abl positive CML cell lines and in CML patients. Interestingly, Imatinib and second-generation tyrosine kinase inhibitors specifically increase ZNF224 expression.
View Article and Find Full Text PDFChronic lymphocytic leukaemia (CLL) is associated with apoptosis resistance and defective control of cell growth. Our study describes for the first time a critical role in CLL for the KRAB-zinc finger protein ZNF224. High ZNF224 transcript levels were detected in CLL patients with respect to control cells.
View Article and Find Full Text PDFThe Kruppel-like protein ZNF224 is a co-factor of the Wilms' tumor 1 protein, WT1. We have previously shown that ZNF224 exerts a specific proapoptotic role in chronic myelogenous leukemia (CML) K562 cells and contributes to cytosine arabinoside-induced apoptosis, by modulating WT1-dependent transcription of apoptotic genes. Here we demonstrate that ZNF224 gene expression is down-regulated both in BCR-ABL positive cell lines and in primary CML samples and is restored after imatinib and second generation tyrosine kinase inhibitors treatment.
View Article and Find Full Text PDFKRAB-associated protein 1 (KAP1), the transcriptional corepressor of Kruppel-associated box zinc finger proteins (KRAB-ZFPs), is subjected to multiple post-translational modifications that are involved in fine-tuning of the multiple biological functions of KAP1. In previous papers, we analyzed the KAP1-dependent molecular mechanism of transcriptional repression mediated by ZNF224, a member of the KRAB-ZFP family, and identified the protein arginine methyltransferase PRMT5 as a component of the ZNF224 repression complex. We demonstrated that PRMT5-mediated histone arginine methylation is required to elicit ZNF224 transcriptional repression.
View Article and Find Full Text PDFZinc finger proteins containing the Kruppel associated box (KRAB-ZFPs) constitute the largest individual family of transcriptional repressors encoded by the genomes of higher organisms. KRAB domain, positioned at the NH2 terminus of the KRAB-ZFPs, interacts with a scaffold protein, KAP-1, which is able to recruit various transcriptional factors causing repression of genes to which KRAB ZFPs bind. The relevance of such repression is reflected in the large number of the KRAB zinc finger protein genes in the human genome.
View Article and Find Full Text PDFThe transcription factor Wilms' tumor gene 1, WT1, is implicated both in normal developmental processes and in the generation of a variety of solid tumors and hematological malignancies. Physical interactions of other cellular proteins with WT1 are known to modulate its function. We previously identified the Krüppel-like zinc-finger protein, ZNF224, as a novel human WT1-associating protein that enhances the transcriptional activation of the human vitamin D receptor promoter by WT1.
View Article and Find Full Text PDFInt J Biochem Cell Biol
April 2011
The Kruppel-like zinc finger protein ZNF224 was originally identified as the transcriptional repressor of the human aldolase A gene. ZNF224 transcriptional repression depends on interaction with the corepressor KAP-1 and the recruitment of enzyme activities modifying chromatin, in accordance with repression mechanism of KRAB-ZFP family. Recently, the arginine methyltransferase PRMT5 was demonstrated to play a crucial role in the transcriptional ZNF224 repressor complex.
View Article and Find Full Text PDFWilms' tumour suppressor gene, WT1, is mutated/deleted in approximately 15% of Wilms' tumours, highly expressed in the majority of other cancers and is essential for normal embryonic development. The gene encodes multiple isoforms of a zinc-finger (ZF) protein with diverse cellular functions, in particular participating in both transcriptional and post-transcriptional gene regulation. Physical interactions of other cellular proteins with WT1 are known to modulate its function.
View Article and Find Full Text PDFGene transcription in eukaryotes is modulated by the coordinated recruitment of specific transcription factors and chromatin-modulating proteins. Indeed, gene activation and/or repression is/are regulated by histone methylation status at specific arginine or lysine residues. In this work, by co-immunoprecipitation experiments, we demonstrate that PRMT5, a type II protein arginine methyltransferase that monomethylates and symmetrically dimethylates arginine residues, is physically associated with the Kruppel-like associated box-zinc finger protein ZNF224, the aldolase A gene repressor.
View Article and Find Full Text PDFWe previously reported that ZNF224, a novel Krüppel-associated box-containing zinc-finger protein, represses aldolase A gene transcription by interacting with the KAP-1 co-repressor. Using northern blot and PCR procedures, we now demonstrate that the transcript encoding ZNF255 is a ZNF224 isoform and that the corresponding mRNAs are differentially expressed in human adult and foetal tissues. Moreover, transient transfection of recombinant ZNF224 and ZNF255 proteins and chromatin-immunoprecipitation assays indicate that ZNF224 binds the negative regulatory element of the aldolase A gene (AldA-NRE) and inhibits transcription more efficiently than ZNF255.
View Article and Find Full Text PDFFamilial adenomatous polyposis (FAP) is a rare precancerous condition caused by mutations in the adenomatous polyposis coli (apc) gene. Alternative splicing mechanisms involving non-coding and coding exons result in multiple protein variants whose molecular weight ranges between 90 and 300 kDa. We examined the apc 5' coding region and identified nine new transcripts generated from alternative and/or aberrant splicing.
View Article and Find Full Text PDF