Publications by authors named "Elena Canato"

PEGylation is currently used for the synthesis of stealth liposomes and to enhance the pharmacokinetic and biopharmaceutical properties of payloads. PEGylated dendron phospholipids can decrease the detachment of polyethylene glycol (PEG) from the liposomal surface owing to an increased hydrophobic anchoring effect on the phospholipid bilayer of liposomes and thus generating super stealth liposomes that are suitable for the systemic delivery of anticancer drugs. Herein, doxorubicin hydrochloride-loaded super stealth liposomes were studied for the treatment of breast cancer lung metastasis in an animal model.

View Article and Find Full Text PDF
Article Synopsis
  • * The development of targeted liposomes for cancer therapy has faced challenges, but a new type called Super Stealth Immunoliposomes (SSIL2) shows promise by stabilizing the protective polymer layer and effectively targeting cancer cells.
  • * Experimental results indicate that SSIL2 outperforms traditional stealth liposomes and stealth immunoliposomes in both safety and anticancer efficacy during tests in cell cultures, zebrafish larvae, and rodent models, marking progress in targeted cancer treatment.
View Article and Find Full Text PDF

Despite several vaccines that are currently approved for human use to control the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent medical need for therapeutic and prophylactic options. SARS-CoV-2 binding and entry in human cells involves interactions of its spike (S) protein with several host cell surface factors, including heparan sulfate proteoglycans (HSPGs), transmembrane protease serine 2 (TMPRSS2), and angiotensin-converting enzyme 2 (ACE2). In this paper we investigated the potential of sulphated Hyaluronic Acid (sHA), a HSPG mimicking polymer, to inhibit the binding of SARS-CoV-2 S protein to human ACE2 receptor.

View Article and Find Full Text PDF

Polymer conjugation can be considered one of the leading approaches within the vast field of nanotechnology-based drug delivery systems. In fact, such technology can be exploited for delivering an active molecule, such as a small drug, a protein, or genetic material, or it can be applied to other drug delivery systems as a strategy to improve their in vivo behavior or pharmacokinetic activities such as prolonging the half-life of a drug, conferring stealth properties, providing external stimuli responsiveness, and so on. If on the one hand, polymer conjugation with biotech drug is considered the linchpin of the protein delivery field boasting several products in clinical use, on the other, despite dedicated research, conjugation with low molecular weight drugs has not yet achieved the milestone of the first clinical approval.

View Article and Find Full Text PDF

The mechanisms by which prostate cancer shifts from an indolent castration-sensitive phenotype to lethal castration-resistant prostate cancer (CRPC) are poorly understood. Identification of clinically relevant genetic alterations leading to CRPC may reveal potential vulnerabilities for cancer therapy. Here we find that CUB domain-containing protein 1 (CDCP1), a transmembrane protein that acts as a substrate for SRC family kinases (SFKs), is overexpressed in a subset of CRPC.

View Article and Find Full Text PDF