Friedreich ataxia (FA) is a rare, recessive neuro-cardiodegenerative disease caused by deficiency of the mitochondrial protein frataxin. Mitochondrial dysfunction, a reduction in the activity of iron-sulfur enzymes, iron accumulation, and increased oxidative stress have been described. Dorsal root ganglion (DRG) sensory neurons are among the cellular types most affected in the early stages of this disease.
View Article and Find Full Text PDFFriedreich Ataxia (FA) is a rare neuro-cardiodegenerative disease caused by mutations in the frataxin (FXN) gene. The most prevalent mutation is a GAA expansion in the first intron of the gene causing decreased frataxin expression. Some patients present the GAA expansion in one allele and a missense mutation in the other allele.
View Article and Find Full Text PDFFriedreich Ataxia is a neuro-cardiodegenerative disease caused by the deficiency of frataxin, a mitochondrial protein. Many evidences indicate that frataxin deficiency causes an unbalance of iron homeostasis. Nevertheless, in the last decade many results also highlighted the importance of calcium unbalance in the deleterious downstream effects caused by frataxin deficiency.
View Article and Find Full Text PDFFriedreich ataxia (FA) is a neurodegenerative disease caused by the deficiency of frataxin, a mitochondrial protein. In primary cultures of dorsal root ganglia neurons, we showed that frataxin depletion resulted in decreased levels of the mitochondrial calcium exchanger NCLX, neurite degeneration and apoptotic cell death. Here, we describe that frataxin-deficient dorsal root ganglia neurons display low levels of ferredoxin 1 (FDX1), a mitochondrial Fe/S cluster-containing protein that interacts with frataxin and, interestingly, is essential for the synthesis of calcitriol, the active form of vitamin D.
View Article and Find Full Text PDFFriedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy, and increased incidence in diabetes. The underlying pathophysiological mechanism of FRDA, driven by a significantly decreased expression of frataxin (FXN), involves increased oxidative stress, reduced activity of enzymes containing iron‑sulfur clusters (ISC), defective energy production, calcium dyshomeostasis, and impaired mitochondrial biogenesis, leading to mitochondrial dysfunction. The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor playing a key role in mitochondrial function and biogenesis, fatty acid storage, energy metabolism, and antioxidant defence.
View Article and Find Full Text PDFCalpains are calcium-dependent proteases activated in apoptotic cell death and neurodegeneration. Friedreich Ataxia is a neurodegenerative rare disease caused by frataxin deficiency, a mitochondrial protein. Dorsal root ganglion (DRG) sensory neurons are among the cellular types most affected in this disease.
View Article and Find Full Text PDFAggregation or phosphorylation of the microtubule-associated protein tau is the pathological hallmark in a number of diseases termed tauopathies, which include the most common neurodegenerative disorder, Alzheimer's disease; or frontotemporal dementia, linked to mutations in the gene MAPT encoding tau. Although misfolded tau has strong familial and histopathological (as in intracellular tangles) association with neurodegenerative disorders, the cellular mechanism of tau-induced pathology remains to be controversial. Here we studied the effect of tau on the cytosolic and mitochondrial calcium homeostasis using primary cortical cultures treated with the protein and iPSC-derived neurons bearing the 10 + 16 MAPT mutation linked to frontotemporal dementia.
View Article and Find Full Text PDFCalcium is utilised by cells in signalling and in regulating ATP production; it also contributes to cell survival and, when concentrations are unbalanced, triggers pathways for cell death. Mitochondria contribute to calcium buffering, meaning that mitochondrial calcium uptake and release is intimately related to cytosolic calcium concentrations. This review focuses on the proteins contributing to mitochondrial calcium homoeostasis, the roles of the mitochondrial permeability transition pore (MPTP) and mitochondrial calcium-activated proteins, and their relevance in neurodegenerative pathologies.
View Article and Find Full Text PDFFriedreich ataxia (FA) is a rare disease caused by deficiency of frataxin, a mitochondrial protein. As there is no cure available for this disease, many strategies have been developed to reduce the deleterious effects of such deficiency. One of these approaches is based on delivering frataxin to the tissues by coupling the protein to trans-activator of transcription (TAT) peptides, which enables cell membranes crossing.
View Article and Find Full Text PDF