Publications by authors named "Elena Bonechi"

Relapsing-remitting multiple sclerosis (RRMS) is a demyelinating disease in which pathogenesis T cells have a major role. Despite the unknown etiology, several risk factors have been described, including a strong association with human leukocyte antigen (HLA) genes. Recent findings showed that HLA class I-G (HLA-G) may be tolerogenic in MS, but further insights are required.

View Article and Find Full Text PDF

We developed a nanotechnology based-cell mediated drug delivery system by loading myelin antigen-specific T cells with nanoparticles bound to anti-CD20 monoclonal antibody. Anti-CD20 antibody is a current treatment (ocrelizumab) for multiple sclerosis (MS), a chronic, inflammatory and autoimmune disease of the central nervous system (CNS). CD20-depletion has been associated with efficacy in active relapsing and progressive MS, but may not efficiently target inflammatory cells compartmentalized in the CNS.

View Article and Find Full Text PDF

Natalizumab (NTZ) and autologous hematopoietic stem cell transplantation (AHSCT) are two successful treatments for relapsing-remitting multiple sclerosis (RRMS), an autoimmune T-cell-driven disorder affecting the central nervous system that is characterized by relapses interspersed with periods of complete or partial recovery. Both RRMS treatments have been documented to impact T-cell subpopulations and the T-cell receptor (TCR) repertoire in terms of clone frequency, but, so far, the link between T-cell naive and memory populations, autoimmunity, and treatment outcome has not yet been established hindering insight into the post-treatment TCR landscape of MS patients. To address this important knowledge gap, we tracked peripheral T-cell subpopulations (naïve and memory CD4+ and CD8+) across 15 RRMS patients before and after two years of continuous treatment (NTZ) and a single treatment course (AHSCT) by high-throughput TCRß sequencing.

View Article and Find Full Text PDF

Background: Synaptic dysfunction, named synaptopathy, due to inflammatory status of the central nervous system (CNS) is a recognized factor potentially underlying both motor and cognitive dysfunctions in neurodegenerative diseases. To gain knowledge on the mechanistic interplay between local inflammation and synapse changes, we compared two diverse inflammatory paradigms, a cytokine cocktail (CKs; IL-1β, TNF-α, and GM-CSF) and LPS, and their ability to tune GABAergic current duration in spinal cord cultured circuits.

Methods: We exploit spinal organotypic cultures, single-cell electrophysiology, immunocytochemistry, and confocal microscopy to explore synaptic currents and resident neuroglia reactivity upon CK or LPS incubation.

View Article and Find Full Text PDF

Graphene-based nanomaterials are increasingly engineered as components of biosensors, interfaces or drug delivery platforms in neuro-repair strategies. In these developments, the mostly used derivative of graphene is graphene oxide (GO). To tailor the safe development of GO nanosheets, we need to model tissue responses, and in particular the reactivity of microglia, a sub-population of neuroglia that acts as the first active immune response, when challenged by GO.

View Article and Find Full Text PDF

The lipid sensor oleoylethanolamide (OEA), an endogenous high-affinity agonist of peroxisome proliferator-activated receptor-α (PPAR-α) secreted in the proximal intestine, is endowed with several distinctive homeostatic properties, such as control of appetite, anti-inflammatory activity, stimulation of lipolysis and fatty acid oxidation. When administered exogenously, OEA has beneficial effects in several cognitive paradigms; therefore, in all respects, OEA can be considered a hormone of the gut-brain axis. Here we report an unexplored modulatory effect of OEA on the intestinal microbiota and on immune response.

View Article and Find Full Text PDF

In neuro Behçet disease with multiple sclerosis-like features, diagnosis could be challenging. Here, we studied the cerebrospinal fluid and serum inflammatory profile of 11 neuro Behçet and 21 relapsing-remitting multiple sclerosis patients. Between the soluble factors analyzed (MMP9, TNF , IL6, CXCL13, CXCL10, CXCL8, IFN , IL10, IL17, IL23, and others) we found MMP9 increased in neuro Behçet serum compared to multiple sclerosis and decreased in cerebrospinal fluid.

View Article and Find Full Text PDF

Th17 cells have been casually associated to the pathogenesis of autoimmune disease. We have previously demonstrated that Rai/ShcC, a member of the Shc family of adaptor proteins, negatively regulates Th17 cell differentiation and lupus autoimmunity. In this study, we have investigated the pathogenic outcome of the Th17 bias associated with Rai deficiency on multiple sclerosis development, using the experimental autoimmune encephalomyelitis (EAE) mouse model.

View Article and Find Full Text PDF

Histamine, a major mediator in allergic diseases, differentially regulates the polarizing ability of dendritic cells after Toll-like receptor (TLR) stimulation, by not completely explained mechanisms. In this study we investigated the effects of histamine on innate immune reaction during the response of human monocyte-derived DCs (mDCs) to different TLR stimuli: LPS, specific for TLR4, and Pam3Cys, specific for heterodimer molecule TLR1/TLR2. We investigated actin remodeling induced by histamine together with mDCs phenotype, cytokine production, and the stimulatory and polarizing ability of Th0.

View Article and Find Full Text PDF

An increasing body of literature is addressing the immuno-modulating functions of miRNAs which include paracrine signaling via exosome-mediated intercellular miRNA. In view of the recent evidence of intake and bioavailability of dietary miRNAs in humans and animals we explored the immuno-modulating capacity of plant derived miRNAs. Here we show that transfection of synthetic miRNAs or native miRNA-enriched fractions obtained from a wide range of plant species and organs modifies dendritic cells ability to respond to inflammatory agents by limiting T cell proliferation and consequently dampening inflammation.

View Article and Find Full Text PDF

Objective: To confirm CXCL10 over production in bone marrow mesenchymal stem cells (MSCs) and circulating monocytes isolated from multiple sclerosis patients (MS) and identify predate cell molecular signature; to extend this analysis after autologous hematopoietic stem cell transplantation (AHSCT) to test if therapy has modifying effects on MSCs and circulating monocytes.

Methods: MSCs and monocytes were isolated from 19 MS patients who undergone AHSCT before and seven of them at least 3 years after transplant. CXCL10 production was detected after LPS/IFN-γ stimulation.

View Article and Find Full Text PDF
Article Synopsis
  • Vaccination strategies utilizing dendritic cells (DCs) are effective due to their ability to activate both innate and adaptive immune responses against tumors.
  • The study focuses on the synthesis of a new compound, glycodendron 5, which targets DCs with its mannose residues and contains an immunogenic component related to melanoma.
  • Test results show that glycodendron 5 successfully activates human immature DCs and promotes T cell proliferation, enhancing the immune response.
View Article and Find Full Text PDF