In 2001, Fondazione Telethon and the Italian muscular dystrophy patient organisation Unione Italiana Lotta alla Distrofia Muscolare joined their efforts to design and launch a call for grant applications specifically dedicated to clinical projects in the field of neuromuscular disorders. This strategic initiative, run regularly over the years and still ongoing, aims at supporting research with impact on the daily life of people with a neuromuscular condition and is centred on macro-priorities identified by the patient organisation. It is investigator-driven, and all proposals are peer-reviewed for quality and feasibility.
View Article and Find Full Text PDFGrowth factor receptors induce a transient increase in reactive oxygen species (ROS) levels upon receptor binding to promote signaling through oxidation of protein tyrosine phosphatases (PTPs). Most studies have focused on NADPH oxidases as the dominant source of ROS to induce PTP oxidation. A potential additional regulator of growth factor-induced PTP oxidation is p66Shc, which stimulates mitochondrial ROS production.
View Article and Find Full Text PDFUpon oxidative challenge the genome accumulates adducts and breaks that activate the DNA damage response to repair, arrest, or eliminate the damaged cell. Thus, reactive oxygen species (ROS) generated by endogenous oxygen metabolism are thought to affect mutation frequency. However, few studies determined the mutation frequency when oxidative stress is reduced.
View Article and Find Full Text PDFReactive oxygen species (ROS) are regarded as hazardous by-products of mitochondrial respiration. In addition to the respiratory chain, specific ROS-generating systems have evolved. In particular, p66Shc is a mitochondrial redox protein that oxidizes cytochrome c to generate H2O2.
View Article and Find Full Text PDFOxygen metabolism is thought to impact on aging through the formation of reactive oxygen species (ROS) that are supposed to damage biological molecules. The study of p66(Shc), a crucial regulator of ROS level involved in aging dysfunction, suggests that the incidence of degenerative disease and longevity are determined by a specific signaling function of ROS other than their unspecific damaging property.
View Article and Find Full Text PDFWe previously showed that the human heart expresses all known P2X and P2Y receptors activated by extra-cellular adenine or uracil nucleotides. Despite evidence that, both in humans and rodents, plasma levels of ATP and UTP markedly increase during myocardial infarction, the differential effects mediated by the various adenine- and uracil-preferring myocardial P2 receptors are still largely unknown. Here, we studied the effects of adenine and uracil nucleotides on murine HL-1 cardiomyocytes.
View Article and Find Full Text PDFATP acts as a neurotransmitter via seven P2X receptor-channels for Na(+) and Ca(2+), and eight G-protein-coupled P2Y receptors. Despite evidence suggesting roles in human heart, the map of myocardial P2 receptors is incomplete, and their involvement in chronic heart failure (CHF) has never received adequate attention. In left myocardia from five to nine control and 5-12 CHF subjects undergoing heart transplantation, we analyzed the full repertoire of P2 receptors and of 10 "orphan" P2Y-like receptors.
View Article and Find Full Text PDFEvasion of apoptosis is a hallmark of cancer, but the molecular circuitries of this process are not understood. Here we show that survivin, a member of the inhibitor of apoptosis gene family that is overexpressed in cancer, exists in a novel mitochondrial pool in tumor cells. In response to cell death stimulation, mitochondrial survivin is rapidly discharged in the cytosol, where it prevents caspase activation and inhibits apoptosis.
View Article and Find Full Text PDFPathways controlling cell proliferation and cell survival require flexible adaptation to environmental stresses. These mechanisms are frequently exploited in cancer, allowing tumor cells to thrive in unfavorable milieus. Here, we show that Hsp90, a molecular chaperone that is central to the cellular stress response, associates with survivin, an apoptosis inhibitor and essential regulator of mitosis.
View Article and Find Full Text PDFSurvivin is a member of the Inhibitor of Apoptosis gene family that has been implicated in cell division and suppression of apoptosis. Here, we show that preferential ablation of the nuclear pool of survivin by RNA interference produces a mitotic arrest followed by re-entry into the cell cycle and polyploidy. Survivin ablation causes multiple centrosomal defects, aberrant multipolar spindle formation, and chromatin missegregation, and these phenotypes are exacerbated by loss of the cell cycle regulator, p21(Waf1/Cip1) in p21(-/-) cells.
View Article and Find Full Text PDFBoth the anticancer agent 2-chloro-2'-deoxy-adenosine (Cladribine) and its derivative 2-chloro-adenosine induce apoptosis of human astrocytoma cells (J Neurosci Res 60:388-400, 2000). In this study, we have analyzed the involvement of caspases in these effects. Both compounds produced a gradual and time-dependent activation of "effector" caspase-3, which preceded the appearance of the nuclear signs of apoptosis, suggesting a temporal correlation between these two events.
View Article and Find Full Text PDF