Global change is imposing significant losses in the functional traits of marine organisms. Although areas of climatic refugia ameliorate local conditions and help them to persist, the extent to which mesoscale effects contribute for intraregional variability on population traits and conservation is uncertain. Here we assess patterns of conservation status of Fucus guiryi, the main intertidal habitat-forming seaweed in the Strait of Gibraltar (southern Spain and northern Morocco).
View Article and Find Full Text PDFWe investigated the roles of acclimation and different components involved in evolution (adaptation, chance and history) on the changes in the growth rate of the model freshwater microalga Chlamydomonas reinhardtii P. A. Dang.
View Article and Find Full Text PDFSulphide is proposed to have influenced the evolution of primary stages of oxygenic photosynthesis in cyanobacteria. However, sulphide is toxic to most of the species of this phylum, except for some sulphide-tolerant species showing various sulphide-resistance mechanisms. In a previous study, we found that this tolerance can be induced by environmental sulphidic conditions, in which two experimentally derived strains with an enhanced tolerance to sulphide were obtained from Microcystis aeruginosa, a sensitive species, and Oscillatoria, a sulphide-tolerant genus.
View Article and Find Full Text PDFOne of the most important anthropogenic impacts on freshwater aquatic ecosystems close to intensive agriculture areas is the cumulative increase in herbicide concentrations. The threat is especially relevant for phytoplankton organisms because they have the same physiological targets as the plants for which herbicides have been designed. This led us to explore the evolutionary response of three phytoplanktonic species to increasing concentrations of two herbicides and its consequences in terms of growth and photosynthesis performance.
View Article and Find Full Text PDFThe overall mean levels of different environmental variables are changing rapidly in the present Anthropocene, in some cases creating lethal conditions for organisms. Under this new scenario, it is crucial to know whether the adaptive potential of organisms allows their survival under different rates of environmental change. Here, we used an eco-evolutionary approach, based on a ratchet protocol, to investigate the effect of environmental change rate on the limit of resistance to salinity of three strains of the toxic cyanobacterium Specifically, we performed two ratchet experiments in order to simulate two scenarios of environmental change.
View Article and Find Full Text PDFJ Phycol
December 2019
Experimental evolution studies using cyanobacteria as model organisms are scarce despite the role of cyanobacteria in the evolution of photosynthesis. Three different experimental evolution approaches have been applied to shed light on the sulfide adaptation process, which played a key role in the evolution of this group. We used a Microcystis aeruginosa sulfide-sensitive strain, unable to grow above ~0.
View Article and Find Full Text PDFThe canopy-forming, intertidal brown (Phaeophyceae) seaweed is distributed along the cold-temperate and warm-temperate coasts of Europe and North Africa. Curiously, an isolated population develops at Punta Calaburras (Alboran Sea, Western Mediterranean) but thalli are not present in midsummer every year, unlike the closest (ca. 80 km), perennial populations at the Strait of Gibraltar.
View Article and Find Full Text PDFMicrob Ecol
May 2016
The cyanobacterium Microcystis aeruginosa is a mesophilic freshwater organism, which cannot tolerate sulphide. However, it was possible to isolate a sulphide-resistant (S(r)) mutant strain that was able to survive in a normally lethal medium sulphide. In order to evaluate the cost of the mutation conferring sulphide resistance in the S(r) strain of M.
View Article and Find Full Text PDFLos Baños de Vilo (S Spain) is a natural spa characterized by extreme sulphureous waters; however, populations of chlorophyceans inhabit in the spa. The adaptation mechanisms allowing resistance by photosynthetic microorganisms to the extreme sulphureous waters were studied by using a modified Luria-Delbrück fluctuation analysis. For this purpose, the adaptation of the chlorophycean Dictyosphaerium chlorelloides and the cyanobacterium Microcystis aeruginosa (both isolated from non-sulphureous water) were analysed in order to distinguish between physiological adaptation (acclimation) and genetic adaptation by the selection of rare spontaneous mutations.
View Article and Find Full Text PDFThe cyanobacterium Microcystis aeruginosa forms blooms that can consist of colonies. We have investigated how M. aeruginosa acclimatizes to changing light conditions such as can occur during blooms.
View Article and Find Full Text PDFWe have studied the plasticity of the photosynthetic apparatus in the endangered aquatic macrophyte Althenia orientalis to the gradient of light availability within its meadow canopy. We determined diurnal change in situ irradiance, light quality, in vivo chlorophyll a fluorescence, ex situ oxygen evolution rates, respiration rate and pigment concentration. The levels of photosynthetic photon flux density (PFD) and ultraviolet radiation (UVR) and the red/far-red ratio decreased with depth within the canopies of A.
View Article and Find Full Text PDFAlthough populations of cyanobacteria are usually considered to be clonal, their capacity to survive environmental changes suggests intrapopulation genetic variation. We therefore estimated the genetic variability on the basis of two processes important for any photoautotroph - photochemical and nonphotochemical quenching - as well as photosynthetic pigment concentrations. For this purpose, two parameters related to photochemical and nonphotochemical quenching were measured using specific experimental and statistical procedures, in 25 strains of the cyanobacterium Microcystis aeruginosa, along with their contents of chlorophyll a, total carotenoids and phycocyanin.
View Article and Find Full Text PDFAdaptation of Spirogyra insignis (Chlorophyceae) to growth and survival in an extreme natural environment (sulphureous waters from La Hedionda Spa, S. Spain) was analysed by using an experimental model. Photosynthesis and growth of the alga were inhibited when it was cultured in La Hedionda Spa waters (LHW), but after further incubation for several weeks, the culture survived due to the growth of a variant that was resistant to LHW.
View Article and Find Full Text PDF