This study investigates the Y-chromosome genetic diversity of the Turkmen population in Turkmenistan, analyzing 23 Y-STR loci for the first time in a sample of 100 individuals. Combined with comparative data from Turkmen populations in Afghanistan, Iran, Iraq, Russia, and Uzbekistan, this analysis offers insights into the genetic structure and relationships among Turkmen populations across regions across Central Asia and the Near East. High haplotype diversity in the Turkmen of Turkmenistan is shaped by founder effects (lineage expansions) from distinct haplogroups, with haplogroups Q and R1a predominating.
View Article and Find Full Text PDFObjective: This study assesses the accuracy of the IrisPlex system, a genetic eye color prediction tool for forensic analysis, in the Kazakh population. The study compares previously published genotypes of 515 Kazakh individuals from varied geographical and ethnohistorical contexts with phenotypic data on their eye color, introduced for the first time in this research.
Results: The IrisPlex panel's effectiveness in predicting eye color in the Kazakh population was validated.
Objectives: The collection of genotype data was conducted as an essential part of a pivotal research project with the goal of examining the genetic variability of skin, hair, and iris color among the Kazakh population. The data has practical application in the field of forensic DNA phenotyping (FDA). Due to the limited size of forensic databases from Central Asia (Kazakhstan), it is practically impossible to obtain an individual identification result based on forensic profiling of short tandem repeats (STRs).
View Article and Find Full Text PDFThe gene pool of the East Caucasus, encompassing modern-day Azerbaijan and Dagestan populations, was studied alongside adjacent populations using 83 Y-chromosome SNP markers. The analysis of genetic distances among 18 populations ( = 2216) representing Nakh-Dagestani, Altaic, and Indo-European language families revealed the presence of three components (Steppe, Iranian, and Dagestani) that emerged in different historical periods. The Steppe component occurs only in Karanogais, indicating a recent medieval migration of Turkic-speaking nomads from the Eurasian steppe.
View Article and Find Full Text PDFIn order to be digested, the disaccharide trehalose needs to be cleaved by the trehalase enzyme. There were reports suggesting that trehalase deficiency was more common in high-latitude than in the temperate climate populations. New horizons were opened for the epidemiologic research of trehalase enzymopathy when it became clear that reduced trehalase activity is determined by the A allele of t gene (rs2276064).
View Article and Find Full Text PDFThe pathogenic variants of genes encoding proteins, participating in the formation and functioning of epidermis and dermo-epidermal junctions, create a large variety of clinical phenotypes from: small localized to severe generalized dermatitis, as well as early, or even, prenatal death due to extensive epidermis loss. The diagnostic panel in this study was developed for the purposes of identifying these pathogenic genetic variants in 268 Russian children, who possessed the epidermolysis bullosa symptom complex in a selection of 247 families. This panel included the targeted areas of 33 genes, which are genetic variants that can lead to the development of the phenotype mentioned above.
View Article and Find Full Text PDFIn the past two decades, studies of Y chromosomal single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs) have shed light on the demographic history of Central Asia, the heartland of Eurasia. However, complex patterns of migration and admixture have complicated population genetic studies in Central Asia. Here, we sequenced and analyzed the Y-chromosomes of 187 male individuals from Kazakh, Kyrgyz, Uzbek, Karakalpak, Hazara, Karluk, Tajik, Uyghur, Dungan, and Turkmen populations.
View Article and Find Full Text PDFCurrently available genetic tools effectively distinguish between different continental origins. However, North Eurasia, which constitutes one-third of the world's largest continent, remains severely underrepresented. The dataset used in this study represents 266 populations from 12 North Eurasian countries, including most of the ethnic diversity across Russia's vast territory.
View Article and Find Full Text PDFBackground: Information about the distribution of clinically significant genetic markers in different populations may be helpful in elaborating personalized approaches to the clinical management of COVID-19 in the absence of consensus guidelines.
Aim: Analyze frequencies and distribution patterns of two markers associated with severe COVID-19 ( and ) and look for potential correlations between these markers and deaths from COVID-19 among populations in Russia and across the world.
Methods: We genotyped 1883 samples from 91 ethnic groups pooled into 28 populations representing Russia and its neighbor states.
Western Kazakhstan is populated by three clans totaling 2 million people. Since the clans are patrilineal, the Y-chromosome is the most informative genetic system for tracing their origin. We genotyped 40 Y-SNP and 17 Y-STR markers in 330 Western Kazakhs.
View Article and Find Full Text PDFBackground: The majority of the Kazakhs from South Kazakhstan belongs to the 12 clans of the Senior Zhuz. According to traditional genealogy, nine of these clans have a common ancestor and constitute the Uissun tribe. There are three main hypotheses of the clans' origin, namely, origin from early Wusuns, from Niru'un Mongols, or from Darligin Mongols.
View Article and Find Full Text PDFBackground: Predicting the eye and hair color from genotype became an established and widely used tool in forensic genetics, as well as in studies of ancient human populations. However, the accuracy of this tool has been verified on the West and Central Europeans only, while populations from border regions between Europe and Asia (like Caucasus and Ural) also carry the light pigmentation phenotypes.
Results: We phenotyped 286 samples collected across North Eurasia, genotyped them by the standard HIrisPlex-S markers and found that predictive power in Caucasus/Ural/West Siberian populations is reasonable but lower than that in West Europeans.
The indigenous populations of inner Eurasia-a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra-harbour tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine and Uzbekistan. We furthermore report additional damage-reduced genome-wide data of two previously published individuals from the Eneolithic Botai culture in Kazakhstan (~5,400 BP).
View Article and Find Full Text PDFArchaeogenetic studies have described the formation of Eurasian 'steppe ancestry' as a mixture of Eastern and Caucasus hunter-gatherers. However, it remains unclear when and where this ancestry arose and whether it was related to a horizon of cultural innovations in the 4 millennium BCE that subsequently facilitated the advance of pastoral societies in Eurasia. Here we generated genome-wide SNP data from 45 prehistoric individuals along a 3000-year temporal transect in the North Caucasus.
View Article and Find Full Text PDFBackground: The genetic origins of Uralic speakers from across a vast territory in the temperate zone of North Eurasia have remained elusive. Previous studies have shown contrasting proportions of Eastern and Western Eurasian ancestry in their mitochondrial and Y chromosomal gene pools. While the maternal lineages reflect by and large the geographic background of a given Uralic-speaking population, the frequency of Y chromosomes of Eastern Eurasian origin is distinctively high among European Uralic speakers.
View Article and Find Full Text PDFThe original version of this Article omitted references to previous work, which are detailed in the associated Author Correction. These omissions have been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDFWhile the series of events that shaped the transition between foraging societies and food producers are well described for Central and Southern Europe, genetic evidence from Northern Europe surrounding the Baltic Sea is still sparse. Here, we report genome-wide DNA data from 38 ancient North Europeans ranging from ~9500 to 2200 years before present. Our analysis provides genetic evidence that hunter-gatherers settled Scandinavia via two routes.
View Article and Find Full Text PDFWe have analyzed Y-chromosomal variation in populations from Transoxiana, a historical region covering the southwestern part of Central Asia. We studied 780 samples from 10 regional populations of Kazakhs, Uzbeks, Turkmens, Dungans, and Karakalpaks using 35 SNP and 17 STR markers. Analysis of haplogroup frequencies using multidimensional scaling and principal component plots, supported by an analysis of molecular variance, showed that the geographic landscape of Transoxiana, despite its distinctiveness and diversity (deserts, fertile river basins, foothills and plains) had no strong influence on the genetic landscape.
View Article and Find Full Text PDFAlthough mutations in the GJB2 gene sequence make up the majority of variants causing autosomal-recessive non-syndromic hearing loss, few large deletions have been shown to contribute to DFNB1 deafness. Currently, genetic testing for DFNB1 hearing loss includes GJB2 sequencing and DFNB1 deletion analysis for two common large deletions, del(GJB6-D13S1830) and del(GJB6-D13S1854). Here, we report frequency in Russia, clinical significance and evolutionary origins of a 101 kb deletion, del(GJB2-D13S175), recently identified by us.
View Article and Find Full Text PDFBackground: The Y-chromosome haplogroup Q has three major branches: Q1, Q2, and Q3. Q1 is found in both Asia and the Americas where it accounts for about 90% of indigenous Native American Y-chromosomes; Q2 is found in North and Central Asia; but little is known about the third branch, Q3, also named Q1b-L275. Here, we combined the efforts of population geneticists and genetic genealogists to use the potential of full Y-chromosome sequencing for reconstructing haplogroup Q3 phylogeography and suggest possible linkages to events in population history.
View Article and Find Full Text PDFHere we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome.
View Article and Find Full Text PDFHigh-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets.
View Article and Find Full Text PDF