Nucleosides Nucleotides Nucleic Acids
December 2003
Six non-conventional adenosine-2'- and 3'-triphosphate analogues of ATP were tested as potential phosphate donors for all four human, and D. melanogaster, deoxyribonucleoside kinases. With dCK (only dAdo as acceptor), TK1, TK2 and dNK only 3'-deoxyadenosine-2'-triphosphate was an effective donor (5-60% that for ATP).
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
February 2003
In extension of an earlier report, six non-conventional analogues of ATP, three adenosine-2'-triphosphates (3'-deoxy, 3'-deoxy-3'-fluoro- and 3'-deoxy-3'-fluoroxylo-), and three adenosine-3'-triphosphates (2'-deoxy-, 2'-deoxy-2'-fluoro- and 2'-deoxy-2'-fluoroara-), were compared with ATP as potential phosphate donors for human deoxycytidine kinase (dCK), cytosolic thymidine kinase (TK1), mitochondrial TK2, deoxyguanosine kinase (dGK), and the deoxyribonucleoside kinase (dNK) from Drosophila melanogaster. With one group of enzymes, comprising TK1, TK2, dNK and dCK (with dAdo as acceptor), only 3'-deoxyadenosine-2'-triphosphate was an effective donor (5-60% that for ATP), and the other five analogues much less so, or inactive. With a second set, including dCK (dCyd, but not dAdo, as acceptor) and dGK (dGuo as acceptor), known to share high sequence similarity (approximately 45% sequence identity), all six analogues were good to excellent donors (13-119% that for ATP).
View Article and Find Full Text PDF