Transposable elements (TEs) are mobile genetic elements that made up about half the human genome. Among them, the autonomous non-LTR retrotransposon long interspersed nuclear element-1 (L1) is the only currently active TE in mammals and covers about 17% of the mammalian genome. L1s exert their function as structural elements in the genome, as transcribed RNAs to influence chromatin structure and as retrotransposed elements to shape genomic variation in somatic cells.
View Article and Find Full Text PDFHuntington's disease (HD) is a dominantly inherited neurodegenerative disorder characterized by a polyglutamine expansion within the N-terminal region of huntingtin protein (HTT). Cellular mechanisms promoting mutant huntingtin (mHTT) clearance are of great interest in HD pathology as they can lower the level of the mutant protein and its toxic aggregated species, thus affecting disease onset and progression. We have previously shown that the prolyl-isomerase PIN1 represents a promising negative regulator of mHTT aggregate accumulation using a genetically precise HD mouse model, namely mice.
View Article and Find Full Text PDFHuntington's disease (HD) is a fatal, dominantly inherited, neurodegenerative disorder due to a pathological expansion of the CAG repeat in the coding region of the HTT gene. In the quest for understanding the molecular basis of neurodegeneration, we have previously demonstrated that the prolyl isomerase Pin1 plays a crucial role in mediating p53-dependent apoptosis triggered by mutant huntingtin (mHtt) in vitro. To assess the effects of the lack of Pin1 in vivo, we have bred Pin1 knock-out mice with Hdh(Q111) knock-in mice, a genetically precise model of HD.
View Article and Find Full Text PDFHuntington disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for huntingtin protein. Several mechanisms have been proposed by which mutant huntingtin (mHtt) may trigger striatal neurodegeneration, including mitochondrial dysfunction, oxidative stress, and apoptosis. Furthermore, mHtt induces DNA damage and activates a stress response.
View Article and Find Full Text PDFHuntington disease (HD) is a neurodegenerative disorder caused by an expansion of polyglutamines in the first exon of huntingtin (HTT), which confers aggregation-promoting properties to amino-terminal fragments of the protein (N-HTT). Mutant N-HTT aggregates are enriched for ubiquitin and contain ubiquitin E3 ligases, thus suggesting a role for ubiquitination in aggregate formation. Here, we report that tumor necrosis factor receptor-associated factor 6 (TRAF6) binds to WT and polyQ-expanded N-HTT in vitro as well as to endogenous full-length proteins in mouse and human brain in vivo.
View Article and Find Full Text PDFThe induction of Rrs1 expression is one of the earliest events detected in a presymptomatic knock-in mouse model of Huntington disease (HD). Rrs1 up-regulation fulfills the HD criteria of dominance, striatal specificity, and polyglutamine dependence. Here we show that mammalian Rrs1 is localized both in the nucleolus as well as in the endoplasmic reticulum (ER) of neurons.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2002
Among the set of genes expressed during the quiescent G0 phase of the cell cycle (gas genes), gas1 encodes for a GPI anchor protein associated to the plasma membrane, which is able to induce growth arrest when overexpressed in proliferating fibroblasts. In this report we describe the isolation and characterization of a gas1 Caenorhabditis elegans homolog, phas-1, that seems to be transcribed as an operon together with a gene encoding for a protein similar to human acid ceramidases. Phas-1 structure is very similar to its mammalian homolog conserving almost all cysteine residues and it is expressed in the pharynx from its early formation, in the two-fold embryo, until the adult stage.
View Article and Find Full Text PDF