Interactions between quasiparticles are of fundamental importance and ultimately determine the macroscopic properties of quantum matter. A famous example is the phenomenon of superconductivity, which arises from attractive electron-electron interactions that are mediated by phonons or even other more exotic fluctuations in the material. Here we introduce mobile exciton impurities into a two-dimensional electron gas and investigate the interactions between the resulting Fermi polaron quasiparticles.
View Article and Find Full Text PDFTopology is central to understanding and engineering materials that display robust physical phenomena immune to imperfections. Different topological phases of matter are characterized by topological invariants. In energy-conserving (Hermitian) systems, these invariants are determined by the winding of eigenstates in momentum space.
View Article and Find Full Text PDFAtomically thin transition metal dichalcogenide crystals (TMDCs) have extraordinary optical properties that make them attractive for future optoelectronic applications. Integration of TMDCs into practical all-dielectric heterostructures hinges on the ability to passivate and protect them against necessary fabrication steps on large scales. Despite its limited scalability, encapsulation of TMDCs in hexagonal boron nitride (hBN) currently has no viable alternative for achieving high performance of the final device.
View Article and Find Full Text PDFPhys Rev Lett
September 2020
We consider exciton polaritons in a zigzag chain of coupled elliptical micropillars subjected to incoherent excitation. The driven-dissipative nature of the system along with the naturally present polarization splitting inside the pillars gives rise to nonreciprocal dynamics, which eventually leads to the non-Hermitian skin effect, where all the modes of the system collapse to one edge. As a result, the polaritons propagate only in one direction along the chain, independent of the excitation position, and the propagation in the opposite direction is suppressed.
View Article and Find Full Text PDFSuperfluidity, first discovered in liquid He, is closely related to Bose-Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations-the phenomenon of quantum depletion. Quantum depletion of atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure.
View Article and Find Full Text PDFBosonic condensation belongs to the most intriguing phenomena in physics, and was mostly reserved for experiments with ultra-cold quantum gases. More recently, it became accessible in exciton-based solid-state systems at elevated temperatures. Here, we demonstrate bosonic condensation driven by excitons hosted in an atomically thin layer of MoSe, strongly coupled to light in a solid-state resonator.
View Article and Find Full Text PDFControlled transfer of orbital angular momentum to an exciton-polariton Bose-Einstein condensate spontaneously created under incoherent, off resonant excitation conditions is a long-standing challenge in the field of microcavity polaritonics. We demonstrate, experimentally and theoretically, a simple and efficient approach to the generation of nontrivial orbital angular momentum states by using optically induced potentials-chiral polaritonic lenses. These lenses are produced by a structured optical pump with a spatial distribution of intensity that breaks the chiral symmetry of the system.
View Article and Find Full Text PDFWe present a general theory of spin-to-orbital angular momentum (AM) conversion of light in focusing, scattering, and imaging optical systems. Our theory employs universal geometric transformations of non-paraxial optical fields in such systems and allows for direct calculation and comparison of the AM conversion efficiency in different physical settings. Observations of the AM conversions using local intensity distributions and far-field polarimetric measurements are discussed.
View Article and Find Full Text PDFWe propose a method for achieving dynamically controllable transport of highly mobile matter-wave solitons in a driven two-dimensional optical lattice. Our numerical analysis based on the mean-field model and the theory based on the time-averaging approach demonstrate that a fast time-periodic rocking of the two-dimensional optical lattice enables efficient stabilization and manipulation of spatially localized matter wave packets via induced reconfigurable mobility channels.
View Article and Find Full Text PDFWe show, both theoretically and experimentally, that high-numerical-aperture (NA) optical microscopy is accompanied by strong spin-orbit interaction of light, which translates fine information about the specimen to the polarization degrees of freedom of light. An 80 nm gold nanoparticle scattering the light in the focus of a high-NA objective generates angular momentum conversion, which is seen as a nonuniform polarization distribution at the exit pupil. We demonstrate remarkable sensitivity of the effect to the position of the nanoparticle: Its subwavelength displacement produces the giant spin-Hall effect, i.
View Article and Find Full Text PDFWe study the dynamics of bright solitons formed in a Bose-Einstein condensate with attractive atomic interactions perturbed by a weak bichromatic optical lattice potential. The lattice depth is a biperiodic function of time with a zero mean, which realizes a flashing ratchet for matter-wave solitons. We find that the average velocity of a soliton and the soliton current induced by the ratchet depend on the number of atoms in the soliton.
View Article and Find Full Text PDFWe demonstrate that the recent observation of nonlinear self-trapping of matter waves in one-dimensional optical lattices [Th. Anker, Phys. Rev.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2005
We derive two systems of coupled-mode equations for spatial gap solitons in one-dimensional (1D) and quasi-one-dimensional (Q1D) photonic lattices induced by two interfering optical beams in a nonlinear photorefractive crystal. The models differ from the ordinary coupled-mode system (e.g.
View Article and Find Full Text PDFWe predict the existence of spatially localized nontrivial topological states of a Bose-Einstein condensate with repulsive atomic interactions confined by an optical lattice. These nonlinear localized states, matter-wave gap vortices, carry a vortexlike phase dislocation and exist in the gaps of the matter-wave band-gap spectrum due to the Bragg scattering. We discuss the structure, stability, and formation dynamics of the gap vortices in the case of two-dimensional optical lattices.
View Article and Find Full Text PDFWe study nonlinear localization of a two-component Bose-Einstein condensate (BEC) in a one-dimensional optical lattice. Our theory shows that spin-dependent optical lattices can be used to effectively manipulate the nonlinear interactions between the BEC components, and to observe composite localized states of a BEC in both bands and gaps of the matter-wave spectrum.
View Article and Find Full Text PDFWe introduce novel optical solitons that consist of a periodic and a spatially localized component coupled nonlinearly via cross-phase modulation. The spatially localized optical field can be treated as a gap soliton supported by the optically induced nonlinear grating. We find different types of these band-gap composite solitons and demonstrate their dynamical stability.
View Article and Find Full Text PDFWe demonstrate that a Bose-Einstein condensate in an optical lattice forms a reconfigurable matter-wave structure with a band-gap spectrum, which resembles a nonlinear photonic crystal for light waves. We study in detail the case of a two-dimensional square optical lattice and show that this atomic band-gap structure allows nonlinear localization of atomic Bloch waves in the form of two-dimensional matter-wave gap solitons.
View Article and Find Full Text PDF