Publications by authors named "Elena A Lukoyanova"

Brain injuries can interrupt descending neural pathways that convey motor commands from the cortex to spinal motoneurons. Here, we demonstrate that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion and asymmetric hindlimb withdrawal reflexes within 3 hr, as well as asymmetry in gene expression patterns in the lumbar spinal cord. The injury-induced postural effects were abolished by hypophysectomy and were mimicked by transfusion of serum from animals with brain injury.

View Article and Find Full Text PDF

Effects of environmental factors may be transmitted to the following generation, and cause neuropsychiatric disorders including depression, anxiety, and posttraumatic stress disorder in the offspring. Enhanced synaptic plasticity induced by environmental enrichment may be also transmitted. We here test the hypothesis that the effects of brain injury in pregnant animals may produce neurological deficits in the offspring.

View Article and Find Full Text PDF

Prolonged seizures produce death of hippocampal neurons, which is thought to initiate epileptogenesis and cause a disruption of hippocampally mediated behaviors. This study aimed to evaluate behavioral and neuroanatomical changes induced by brief seizures and to compare them with changes induced by prolonged seizures. Adult rats were administered 6 brief seizures, elicited by electroshock (ECS).

View Article and Find Full Text PDF

Affective symptoms are frequently observed in patients with epilepsy. Although the etiology of these behavioral complications remains unknown, it is possible that brain damage associated with frequent or prolonged seizures may contribute to their development. To address this issue, we examined the behavioral sequelae of repeated brief seizures evoked by electroconvulsive shock (ECS) and compared them with those resulting from prolonged status epilepticus (SE) induced with pilocarpine.

View Article and Find Full Text PDF

There is strong evidence that the rat retrosplenial cortex (RC) is implicated in spatial navigation and in learning of both aversive and reward-based discrimination tasks. However, its involvement in other functions subserved by the limbic system to which it belongs has not yet been documented. We compared the performance of rats with bilateral excitotoxic damage to RC with that of control rats in a battery of conventional tests, including an open field, plus maze, fear conditioning, step-through passive avoidance, and two-way active avoidance techniques.

View Article and Find Full Text PDF

Damage to the retrosplenial cortex (RC) impairs the performance of rodents on spatial learning and memory tasks, but the extent of these deficits was previously reported to be influenced by the lesion type, rat strain, and behavioral task used. The present study addressed the issue of whether or not cytotoxic damage to RC impairs place navigation of Wistar rats in the Morris water maze and, if so, whether this is merely attributable to spatial learning deficits or to impaired learning of general (nonspatial) behavioral strategies required to correctly perform this task or both. Behaviorally naive rats with bilateral lesions to RC were significantly impaired relative to sham-lesioned rats both during the period of initial learning of the task and during the later phases of training.

View Article and Find Full Text PDF