Objective: To develop a simple robust methodology of screening multiple CHO cell clones secreting recombinant proteins to assess their specific productivity.
Results: We developed a dual assay based on immunoassay measurements of a recombinant protein expression combined with staining of viable cells with resazurin. Following this approach, colonies can be simultaneously assessed for cell growth rate and for production of a recombinant protein.
Biochem Biophys Res Commun
February 2019
The functioning of the N, K-ATPase depends on the redox status of cells and its activity is inhibited by oxidative stress and hypoxia. We previously found that redox sensitivity of the Na,K-ATPase is mediated by glutathionylation of the α-subunit. An increase in the level of glutathionylation of cysteine residues in the Na,K-ATPase α-subunit under stressful conditions leads to a decrease in the activity of the enzyme and a change in its receptor function.
View Article and Find Full Text PDFSodium-potassium adenosine triphosphatase (Na,K-ATPase) creates a gradient of sodium and potassium ions necessary for the viability of animal cells, and it is extremely sensitive to intracellular redox status. Earlier we found that regulatory glutathionylation determines Na,K-ATPase redox sensitivity but the role of basal glutathionylation and other redox modifications of cysteine residues is not clear. The purpose of this study was to detect oxidized, nitrosylated, or glutathionylated cysteine residues in Na,K-ATPase, evaluate the possibility of removing these modifications and assess their influence on the enzyme activity.
View Article and Find Full Text PDFBy maintaining the Na(+) and K(+) transmembrane gradient mammalian Na,K-ATPase acts as a key regulator of neuronal electrotonic properties. Na,K-ATPase has an important role in synaptic transmission and memory formation. Accumulation of beta-amyloid (Aβ) at the early stages of Alzheimer's disease is accompanied by reduction of Na,K-ATPase functional activity.
View Article and Find Full Text PDFActive transport of sodium and potassium ions by Na,K-ATPase is accompanied by the enzyme conformational transition between E1 and E2 states. ATP and ADP bind to Na,K-ATPase in the E1 conformation with similar affinity but the properties of enzyme in complexes with these nucleotides are different. We have studied thermodynamics of Na,K-ATPase binding with adenine nucleotides at different temperatures using isothermal titration calorimetry.
View Article and Find Full Text PDF