Publications by authors named "Eleftherios Christofi"

Multiscale modeling of complex molecular systems, such as macromolecules, encompasses methods that combine information from fine and coarse representations of molecules to capture material properties over a wide range of spatiotemporal scales. Being able to exchange information between different levels of resolution is essential for the effective transfer of this information. The inverse problem of reintroducing atomistic degrees of freedom in coarse-grained (CG) molecular configurations is particularly challenging as, from a mathematical point of view, it is an ill-posed problem; the forward mapping from the atomistic to the CG description is typically defined via a deterministic operator ("one-to-one" problem), whereas the reversed mapping from the CG to the atomistic model refers to creating one representative configuration out of many possible ones ("one-to-many" problem).

View Article and Find Full Text PDF

Despite the modern advances in the available computational resources, the length and time scales of the physical systems that can be studied in full atomic detail, via molecular simulations, are still limited. To overcome such limitations, coarse-grained (CG) models have been developed to reduce the dimensionality of the physical system under study. However, to study such systems at the atomic level, it is necessary to re-introduce the atomistic details into the CG description.

View Article and Find Full Text PDF