Publications by authors named "Eleftheria Vrontou"

The mushroom bodies of Drosophila contain circuitry compatible with race models of perceptual choice. When flies discriminate odor intensity differences, opponent pools of αβ core Kenyon cells (on and off αβ KCs) accumulate evidence for increases or decreases in odor concentration. These sensory neurons and "antineurons" connect to a layer of mushroom body output neurons (MBONs) which bias behavioral intent in opposite ways.

View Article and Find Full Text PDF

Many neurons show compartmentalized activity, in which activity does not spread readily across the cell, allowing input and output to occur locally. However, the functional implications of compartmentalized activity for the wider neural circuit are often unclear. We addressed this problem in the mushroom body, whose principal neurons, Kenyon cells, receive feedback inhibition from a non-spiking interneuron called the anterior paired lateral (APL) neuron.

View Article and Find Full Text PDF

Dopaminergic neurons provide value signals in mammals and insects. During Drosophila olfactory learning, distinct subsets of dopaminergic neurons appear to assign either positive or negative value to odor representations in mushroom body neurons. However, it is not known how flies evaluate substances that have mixed valence.

View Article and Find Full Text PDF

Learning through trial-and-error interactions allows animals to adapt innate behavioural ‘rules of thumb’ to the local environment, improving their prospects for survival and reproduction. Naive Drosophila melanogaster males, for example, court both virgin and mated females, but learn through experience to selectively suppress futile courtship towards females that have already mated. Here we show that courtship learning reflects an enhanced response to the male pheromone cis-vaccenyl acetate (cVA), which is deposited on females during mating and thus distinguishes mated females from virgins.

View Article and Find Full Text PDF

Dopaminergic neurons are thought to drive learning by signaling changes in the expectations of salient events, such as rewards or punishments. Olfactory conditioning in Drosophila requires direct dopamine action on intrinsic mushroom body neurons, the likely storage sites of olfactory memories. Neither the cellular sources of the conditioning dopamine nor its precise postsynaptic targets are known.

View Article and Find Full Text PDF

The cornerstone of the functionality of almost all motor proteins is the regulation of their activity by binding interactions with their respective substrates. In most cases, the underlying mechanism of this regulation remains unknown. Here, we reveal a novel mechanism used by secretory preproteins to control the catalytic cycle of the helicase 'DEAD' motor of SecA, the preprotein translocase ATPase.

View Article and Find Full Text PDF

When competing for resources, two Drosophila melanogaster flies of the same sex fight each other. Males and females fight with distinctly different styles, and males but not females establish dominance relationships. Here we show that sex-specific splicing of the fruitless gene plays a critical role in determining who and how a fly fights, and whether a dominance relationship forms.

View Article and Find Full Text PDF

Most secretory proteins that are destined for the periplasm or the outer membrane are exported through the bacterial plasma membrane by the Sec translocase. Translocase is a complex nanomachine that moves processively along its aminoacyl polymeric substrates effectively pumping them to the periplasmic space. The salient features of this process are: (a) a membrane-embedded "clamp" formed by the trimeric SecYEG protein, (b) a "motor" provided by the dimeric SecA ATPase, (c) regulatory subunits that optimize catalysis and (d) both chemical and electrochemical metabolic energy.

View Article and Find Full Text PDF

SecA, the dimeric ATPase subunit of protein translocase, contains a DEAD helicase catalytic core that binds to a regulatory C-terminal domain. We now demonstrate that IRA1, a conserved helix-loop-helix structure in the C-domain, controls C-domain conformation through direct interdomain contacts. C-domain conformational changes are transmitted to the DEAD motor and alter its conformation.

View Article and Find Full Text PDF

SecA, the preprotein translocase ATPase is built of an amino-terminal DEAD helicase motor domain bound to a regulatory C-domain. SecA recognizes mature and signal peptide preprotein regions. We now demonstrate that the amino-terminal 263 residues of the ATPase subdomain of the DEAD motor are necessary and sufficient for high affinity signal peptide binding.

View Article and Find Full Text PDF