Freehand optical ultrasound (OpUS) imaging is an emerging ultrasound imaging paradigm that uses an array of fibre-optic, photoacoustic ultrasound sources and a single fibre-optic ultrasound detector to perform ultrasound imaging without the need for electrical components in the probe head. Previous freehand OpUS devices have demonstrated capability for real-time, video-rate imaging of clinically relevant targets, but have been hampered by poor ultrasound penetration, significant imaging artefacts and low frame rates, and their designs limited their clinical applicability. In this work we present a novel freehand OpUS imaging platform, including a fully mobile and compact acquisition console and an improved probe design.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
September 2022
Purpose: Multimodality imaging of the vascular system is a rapidly growing area of innovation and research, which is increasing with awareness of the dangers of ionizing radiation. Phantom models that are applicable across multiple imaging modalities facilitate testing and comparisons in pre-clinical studies of new devices. Additionally, phantom models are of benefit to surgical trainees for gaining experience with new techniques.
View Article and Find Full Text PDFAll-optical ultrasound (AOUS) imaging, which uses light to both generate and detect ultrasound, is an emerging alternative to conventional electronic ultrasound imaging. To date, AOUS imaging has been performed using paradigms that either resulted in long acquisition times or employed bench-top imaging systems that were impractical for clinical use. In this work, we present a novel AOUS imaging paradigm where scanning optics are used to rapidly synthesise an imaging aperture.
View Article and Find Full Text PDFPurpose: Image-guided surgery (IGS) is an integral part of modern neuro-oncology surgery. Navigated ultrasound provides the surgeon with reconstructed views of ultrasound data, but no commercial system presently permits its integration with other essential non-imaging-based intraoperative monitoring modalities such as intraoperative neuromonitoring. Such a system would be particularly useful in skull base neurosurgery.
View Article and Find Full Text PDFPhantoms are essential tools for clinical training, surgical planning and the development of novel medical devices. However, it is challenging to create anatomically accurate head phantoms with realistic brain imaging properties because standard fabrication methods are not optimized to replicate any patient-specific anatomical detail and 3D printing materials are not optimized for imaging properties. In order to test and validate a novel navigation system for use during brain tumor surgery, an anatomically accurate phantom with realistic imaging and mechanical properties was required.
View Article and Find Full Text PDFElectrical Impedance Tomography (EIT) is a non-invasive imaging technique, which has the potential to expedite the differentiation of ischaemic or haemorrhagic stroke, decreasing the time to treatment. Whilst demonstrated in simulation, there are currently no suitable imaging or classification methods which can be successfully applied to human stroke data. Development of these complex methods is hindered by a lack of quality Multi-Frequency EIT (MFEIT) data.
View Article and Find Full Text PDF