We have previously shown that normobaric hyperoxia may benefit peri-lesional brain and white matter following traumatic brain injury (TBI). This study examined the impact of brief exposure to hyperoxia using diffusion tensor imaging (DTI) to identify axonal injury distant from contusions. Fourteen patients with acute moderate/severe TBI underwent baseline DTI and following one hour of 80% oxygen.
View Article and Find Full Text PDFImportance: Combined oxygen 15-labeled positron emission tomography (15O PET) and brain tissue oximetry have demonstrated increased oxygen diffusion gradients in hypoxic regions after traumatic brain injury (TBI). These data are consistent with microvascular ischemia and are supported by pathologic studies showing widespread microvascular collapse, perivascular edema, and microthrombosis associated with selective neuronal loss. Fluorine 18-labeled fluoromisonidazole ([18F]FMISO), a PET tracer that undergoes irreversible selective bioreduction within hypoxic cells, could confirm these findings.
View Article and Find Full Text PDFBackground: Traumatic brain injuries result in significant morbidity and mortality. Accurate prediction of prognosis is desirable to inform treatment decisions and counsel family members. Objective To review the currently available prognostic tools for use in traumatic brain injury (TBI), to analyse their value in individual patient management and to appraise ongoing research on prognostic modelling.
View Article and Find Full Text PDFN-acetylaspartate (NAA) is an amino acid derivative primarily located in the neurons of the adult brain. The function of NAA is incompletely understood. Decrease in brain tissue NAA is presently considered symptomatic and a potential biomarker of acute and chronic neuropathological conditions.
View Article and Find Full Text PDFIschemia and metabolic dysfunction remain important causes of neuronal loss after head injury, and we have shown that normobaric hyperoxia may rescue such metabolic compromise. This study examines the impact of hyperoxia within injured brain using diffusion tensor imaging (DTI). Fourteen patients underwent DTI at baseline and after 1 hour of 80% oxygen.
View Article and Find Full Text PDFBackground: Ventilation-associated pneumonia (VAP) is the commonest nosocomial infection in intensive care. Implementation of a VAP prevention care bundle is a proven method to reduce its incidence. The UK care bundle recommends maintenance of the tracheal tube cuff pressure at 20 to 30 cmH₂O with 4-hourly pressure checks and use of tracheal tubes with subglottic aspiration ports in patients admitted for more than 72 h.
View Article and Find Full Text PDF