Publications by authors named "Eleanor G Clark"

Adult regeneration restores patterning of orthogonal body axes after damage in a post-embryonic context. Planarians regenerate using distinct body-wide signals primarily regulating each axis dimension: anteroposterior Wnts, dorsoventral BMP, and mediolateral Wnt5 and Slit determinants. How regeneration can coordinate perpendicular tissue axes without symmetry-breaking embryonic events is not fully understood.

View Article and Find Full Text PDF

Unlabelled: Adult regeneration restores patterning of orthogonal body axes after damage in a post-embryonic context. Planarians regenerate using distinct body-wide signals primarily regulating each axis dimension: anteroposterior Wnts, dorsoventral BMP, and mediolateral Wnt5 and Slit determinants. How regeneration can consistently form perpendicular tissue axes without symmetry-breaking embryonic events is unknown, and could either occur using fully independent, or alternatively, integrated signals defining each dimension.

View Article and Find Full Text PDF

A functional vertebrate kidney relies on structural units called nephrons, which are epithelial tubules with a sequence of segments each expressing a distinct repertoire of solute transporters. The transcriptiona`l codes driving regional specification, solute transporter program activation and terminal differentiation of segment populations remain poorly understood. Here, we demonstrate that the KCTD15 paralogs and function in concert to restrict distal early (DE)/thick ascending limb (TAL) segment lineage assignment in the developing zebrafish pronephros by repressing Tfap2a activity.

View Article and Find Full Text PDF

Because chromatin determines whether information encoded in DNA is accessible to transcription factors, dynamic chromatin states in development may constrain how gene regulatory networks impart embryonic pattern. To determine the interplay between chromatin states and regulatory network function, we performed ATAC-seq on embryos during the establishment of the segmentation network, comparing wild-type and mutant embryos in which all graded maternal patterning inputs are eliminated. While during the period between zygotic genome activation and gastrulation many regions maintain stable accessibility, cis-regulatory modules (CRMs) within the network undergo extensive patterning-dependent changes in accessibility.

View Article and Find Full Text PDF

Renal functional units known as nephrons undergo patterning events during development that create a segmental array of cellular compartments with discrete physiological identities. Here, from a forward genetic screen using zebrafish, we report the discovery that transcription factor AP-2 alpha () coordinates a gene regulatory network that activates the terminal differentiation program of distal segments in the pronephros. We found that acts downstream of Iroquois homeobox 3b (), a distal lineage transcription factor, to operate a circuit consisting of , and genes encoding solute transporters that dictate the specialized metabolic functions of distal nephron segments.

View Article and Find Full Text PDF