Publications by authors named "Eleanor Britton"

Background: Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.

Methods: We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping.

View Article and Find Full Text PDF

Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), is characterized by delayed neurodevelopment, accelerated aging, and increased risk of many co-occurring conditions. Hypoxemia and dysregulated hematopoiesis have been documented in DS, but the underlying mechanisms and clinical consequences remain ill defined. We report an integrative multi-omic analysis of ∼400 research participants showing that people with DS display transcriptomic signatures indicative of elevated heme metabolism and increased hypoxic signaling across the lifespan, along with chronic overproduction of erythropoietin, elevated biomarkers of tissue-specific hypoxia, and hallmarks of stress erythropoiesis.

View Article and Find Full Text PDF

Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmune disorders and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined. Here, we report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS.

View Article and Find Full Text PDF

Individuals with Down syndrome, the genetic condition caused by trisomy 21, exhibit strong inter-individual variability in terms of developmental phenotypes and diagnosis of co-occurring conditions. The mechanisms underlying this variable developmental and clinical presentation await elucidation. We report an investigation of human chromosome 21 gene overexpression in hundreds of research participants with Down syndrome, which led to the identification of two major subsets of co-expressed genes.

View Article and Find Full Text PDF

Down syndrome (DS), the genetic condition caused by trisomy 21, is characterized by variable cognitive impairment, immune dysregulation, dysmorphogenesis and increased prevalence of diverse co-occurring conditions. The mechanisms by which trisomy 21 causes these effects remain largely unknown. We demonstrate that triplication of the interferon receptor (IFNR) gene cluster on chromosome 21 is necessary for multiple phenotypes in a mouse model of DS.

View Article and Find Full Text PDF