Rationale: Li and Mg isotopes are increasingly used as a combined tool within the geosciences. However, established methods require separate sample purification protocols utilising several column separation procedures. This study presents a single-step cation-exchange method for quantitative separation of trace levels of Li and Mg from multiple sample matrices.
View Article and Find Full Text PDFGlaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) incursions onto the West Antarctic continental shelf cause melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet retreat today. Here we present a multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the Holocene epoch (from 11.
View Article and Find Full Text PDFOver the last 5 million years, the global climate system has evolved toward a colder mean state, marked by large-amplitude oscillations in continental ice volume. Equatorward expansion of polar waters and strengthening temperature gradients have been detected. However, the response of the mid latitudes and high latitudes of the Southern Hemisphere is not well documented, despite the potential importance for climate feedbacks including sea ice distribution and low-high latitude heat transport.
View Article and Find Full Text PDFUnderstanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2016
Explanations of the glacial-interglacial variations in atmospheric pCO2 invoke a significant role for the deep ocean in the storage of CO2. Deep-ocean density stratification has been proposed as a mechanism to promote the storage of CO2 in the deep ocean during glacial times. A wealth of proxy data supports the presence of a "chemical divide" between intermediate and deep water in the glacial Atlantic Ocean, which indirectly points to an increase in deep-ocean density stratification.
View Article and Find Full Text PDFThe Intertropical Convergence Zone (ITCZ) encompasses the heaviest rain belt on the Earth. Few direct long-term records, especially in the Pacific, limit our understanding of long-term natural variability for predicting future ITCZ migration. Here we present a tropical precipitation record from the Southern Hemisphere covering the past 282,000 years, inferred from a marine sedimentary sequence collected off the eastern coast of Papua New Guinea.
View Article and Find Full Text PDFRelief of iron (Fe) limitation in the Southern Ocean during ice ages, with potentially increased carbon storage in the ocean, has been invoked as one driver of glacial-interglacial atmospheric CO2 cycles. Ice and marine sediment records demonstrate that atmospheric dust supply to the oceans increased by up to an order of magnitude during glacial intervals. However, poor constraints on soluble atmospheric Fe fluxes to the oceans limit assessment of the role of Fe in glacial-interglacial change.
View Article and Find Full Text PDFThe El Niño-Southern Oscillation (ENSO) is one of the most important components of the global climate system, but its potential response to an anthropogenic increase in atmospheric CO2 remains largely unknown. One of the major limitations in ENSO prediction is our poor understanding of the relationship between ENSO variability and long-term changes in Tropical Pacific oceanography. Here we investigate this relationship using palaeorecords derived from the geochemistry of planktonic foraminifera.
View Article and Find Full Text PDFThis Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10-11 October 2011. The Discussion Meeting, entitled 'Warm climates of the past: a lesson for the future?', brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue.
View Article and Find Full Text PDFOcean acidification due to rising atmospheric CO2 is expected to affect the physiology of important calcifying marine organisms, but the nature and magnitude of change is yet to be established. In coccolithophores, different species and strains display varying calcification responses to ocean acidification, but the underlying biochemical properties remain unknown. We employed an approach combining tandem mass-spectrometry with isobaric tagging (iTRAQ) and multiple database searching to identify proteins that were differentially expressed in cells of the marine coccolithophore species Emiliania huxleyi (strain NZEH) between two CO2 conditions: 395 (∼current day) and ∼1340 p.
View Article and Find Full Text PDFEarth's climate underwent a fundamental change between 1250 and 700 thousand years ago, the mid-Pleistocene transition (MPT), when the dominant periodicity of climate cycles changed from 41 thousand to 100 thousand years in the absence of substantial change in orbital forcing. Over this time, an increase occurred in the amplitude of change of deep-ocean foraminiferal oxygen isotopic ratios, traditionally interpreted as defining the main rhythm of ice ages although containing large effects of changes in deep-ocean temperature. We have separated the effects of decreasing temperature and increasing global ice volume on oxygen isotope ratios.
View Article and Find Full Text PDFOcean acidification, due to anthropogenic CO₂ absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages.
View Article and Find Full Text PDFDeepwater formation in the North Atlantic by open-ocean convection is an essential component of the overturning circulation of the Atlantic Ocean, which helps regulate global climate. We use water-column radiocarbon reconstructions to examine changes in northeast Atlantic convection since the Last Glacial Maximum. During cold intervals, we infer a reduction in open-ocean convection and an associated incursion of an extremely radiocarbon ((14)C)-depleted water mass, interpreted to be Antarctic Intermediate Water.
View Article and Find Full Text PDFDeep-ocean carbonate ion concentrations ([CO(3)(2-)]) and carbon isotopic ratios (δ(13)C) place important constraints on past redistributions of carbon in the ocean-land-atmosphere system and hence provide clues to the causes of atmospheric CO(2) concentration changes. However, existing deep-sea [CO(3)(2-)] reconstructions conflict with one another, complicating paleoceanographic interpretations. Here, we present deep-sea [CO(3)(2-)] for five cores from the three major oceans quantified using benthic foraminiferal boron/calcium ratios since the last glacial period.
View Article and Find Full Text PDFThe Atlantic meridional overturning circulation (AMOC) transports warm salty surface waters to high latitudes, where they cool, sink and return southwards at depth. Through its attendant meridional heat transport, the AMOC helps maintain a warm northwestern European climate, and acts as a control on the global climate. Past climate fluctuations during the Holocene epoch ( approximately 11,700 years ago to the present) have been linked with changes in North Atlantic Ocean circulation.
View Article and Find Full Text PDFThe transition from the extreme global warmth of the early Eocene 'greenhouse' climate approximately 55 million years ago to the present glaciated state is one of the most prominent changes in Earth's climatic evolution. It is widely accepted that large ice sheets first appeared on Antarctica approximately 34 million years ago, coincident with decreasing atmospheric carbon dioxide concentrations and a deepening of the calcite compensation depth in the world's oceans, and that glaciation in the Northern Hemisphere began much later, between 10 and 6 million years ago. Here we present records of sediment and foraminiferal geochemistry covering the greenhouse-icehouse climate transition.
View Article and Find Full Text PDFA rapid increase in greenhouse gas levels is thought to have fueled global warming at the Paleocene-Eocene Thermal Maximum (PETM). Foraminiferal magnesium/calcium ratios indicate that bottom waters warmed by 4 degrees to 5 degrees C, similar to tropical and subtropical surface ocean waters, implying no amplification of warming in high-latitude regions of deep-water formation under ice-free conditions. Intermediate waters warmed before the carbon isotope excursion, in association with downwelling in the North Pacific and reduced Southern Ocean convection, supporting changing circulation as the trigger for methane hydrate release.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2005
The SW Indian Ocean contains at least four layers of water masses with different sources: deep Antarctic (Lower Circumpolar Deep Water) flow to the north, midwater North Indian Deep Water flow to the south and Upper Circumpolar Deep Water to the north, meridional convergence of intermediate waters at 500-1500 m, and the shallow South Equatorial Current flowing west. Sedimentation rates in the area are rather low, being less than 1 cm ka(-1) on Madagascar Ridge, but up to 4 cm ka(-1) at Amirante Passage. Bottom flow through the Madagascar-Mascarene Basin into Amirante Passage varies slightly on glacial-interglacial time-scales, with faster flow in the warm periods of the last interglacial and minima in cold periods.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2003
The operation of the carbon cycle forms an important part of the processes relevant to future changes in atmospheric carbon dioxide. The balance of carbon between terrestrial and oceanic reservoirs is an important factor and here we focus in particular on the oceans. Future changes in the carbon cycle that may affect air-sea partitioning of CO(2) are difficult to quantify but the palaeoceanographic record and modern observational studies provide important evidence of what variations might occur.
View Article and Find Full Text PDFIn order to investigate rapid climatic changes at mid-southern latitudes, we have developed centennial-scale paleoceanographic records from the southwest Pacific that enable detailed comparison with Antarctic ice core records. These records suggest close coupling of mid-southern latitudes with Antarctic climate during deglacial and interglacial periods. Glacial sections display higher variability than is seen in Antarctic ice cores, which implies climatic decoupling between mid- and high southern latitudes due to enhanced circum-Antarctic circulation.
View Article and Find Full Text PDFA record of foraminiferal shell weight across glacial-interglacial Termination I shows a response related to seawater carbonate ion concentration and allows reconstruction of a record of carbon dioxide in surface seawater that matches the atmospheric record. The results support suggestions that higher atmospheric carbon dioxide directly affects marine calcification, an effect that may be of global importance to past and future changes in atmospheric CO2. The process provides negative feedback to the influence of marine calcification on atmospheric carbon dioxide and is of practical importance to the application of paleoceanographic proxies.
View Article and Find Full Text PDF