Background: While the incidence of neonatal intensive care unit (NICU) admission steadily increases, neonatology lacks evidence of a safe, effective, and preventive analgesic for treating procedural pain. Given its role in nociception and promoting healthy neurodevelopment, the endogenous neuropeptide oxytocin (OT) emerges as a promising candidate.
Methods: This study investigates the use of daily repeated subcutaneous OT (1 mg/kg) treatment in an established model of neonatal repetitive procedural pain and assesses the effectivity of OT treatment on mechanical sensitivity and body weight.
Objectives: Diabetes-induced peripheral nerve fiber damage can cause painful diabetic polyneuropathy (PDPN), induced by central sensitization through proinflammatory processes in the spinal dorsal horn. Disturbances in spinal dorsal horn lipid metabolism play a major role in proinflammatory regulation. Conventional (Con)-spinal cord stimulation (SCS) is an alternative treatment for pain relief in PDPN, whereas differential target multiplexed (DTM)-SCS could be more effective than Con-SCS, specifically targeting the spinal inflammatory response.
View Article and Find Full Text PDFObjectives: Spinal cord stimulation (SCS) is an alternative treatment option for painful diabetic polyneuropathy (PDPN). Differential target multiplexed (DTM)-SCS is proposed to be more effective than conventional (Con)-SCS. Animal studies are essential for understanding SCS mechanisms in PDPN pain relief.
View Article and Find Full Text PDFExposure to repetitive painful procedures in the neonatal intensive care unit results in long-lasting effects, especially visible after a "second hit" in adulthood. As the nociceptive system and the hypothalamic-pituitary-adrenal (HPA) axis interact and are vulnerable in early life, repetitive painful procedures in neonates may affect later-life HPA axis reactivity. The first aim of the present study was to investigate the effects of repetitive neonatal procedural pain on plasma corticosterone levels after mild acute stress (MAS) in young adult rats.
View Article and Find Full Text PDFFront Pain Res (Lausanne)
February 2024
Newborns admitted to the neonatal intensive care unit (NICU) regularly undergo painful procedures and may face various painful conditions such as postoperative pain. Optimal management of pain in these vulnerable preterm and term born neonates is crucial to ensure their comfort and prevent negative consequences of neonatal pain. This entails accurate and timely identification of pain, non-pharmacological pain treatment and if needed administration of analgesic therapy, evaluation of treatment effectiveness, and monitoring of adverse effects.
View Article and Find Full Text PDFBackground: Ninety-Hz active-recharge spinal cord stimulation (SCS) applied at below sensory-threshold intensity, as used with fast-acting subperception therapy spinal cord stimulation, has been shown clinically to produce significant analgesia, but additional characterization is required to better understand the therapy. This preclinical study investigates the behavioral effect of multiple 90-Hz SCS variants in a rodent model of neuropathic pain, focusing on charge balance and the relationship between 90-Hz efficacy and stimulation intensity.
Materials And Methods: Rats (n = 24) received a unilateral partial sciatic nerve ligation to induce neuropathic pain and were implanted with a quadripolar lead at T13.
Spinal cord stimulation (SCS) is a last resort treatment for pain relief in painful diabetic peripheral neuropathy (PDPN) patients. However, the effectivity of SCS in PDPN is limited. New SCS paradigms such as high frequency (HF) and differential target multiplexed (DTM) might improve responder rates and efficacy of SCS-induced analgesia in PDPN patients, and are suggested to modulate the inflammatory balance and glial response in the spinal dorsal horn.
View Article and Find Full Text PDFIn this review, the latest insights into habituation to pain in chronic pain are summarized. Using a systematic search, results of studies on the evidence of habituation to (experimental) pain in migraine, chronic low back pain, fibromyalgia, and a variety of chronic pain indications are presented. In migraine, reduced habituation based on self-report and the EEG-based N1 and N2-P2 amplitude is reported, but the presence of contradictory results demands further replication in larger, well-designed studies.
View Article and Find Full Text PDFIntroduction: Chronic discogenic low back pain (CD-LBP) is caused by degenerated disks marked by neural and vascular ingrowth. Spinal cord stimulation (SCS) has been shown to be effective for pain relief in patients who are not responsive to conventional treatments. Previously, the pain-relieving effect of two variations of SCS has been evaluated in CD-LBP: Burst SCS and L2 dorsal root ganglion stimulation (DRGS).
View Article and Find Full Text PDFChronic post-surgical pain affects a large proportion of people undergoing surgery, delaying recovery time and worsening quality of life. Although many environmental variables have been established as risk factors, less is known about genetic risk. To uncover genetic risk factors we performed genome-wide association studies in post-surgical cohorts of five surgery types- hysterectomy, mastectomy, abdominal, hernia, and knee- totaling 1350 individuals.
View Article and Find Full Text PDFIntroduction: Chronic discogenic low back pain (CD-LBP) is caused by degeneration of the disc due to trauma to the annulus or by unprovoked degeneration, resulting in chronic pain. Spinal cord stimulation (SCS) employing the BurstDR™ waveform has been shown to be an effective treatment in a variety of chronic pain conditions. The aim of this prospective case study was to determine the effect of BurstDR™ SCS on pain relief, disability, and patient satisfaction in a population with CD-LBP.
View Article and Find Full Text PDFAim: Due to the introduction of a new implantable pulse generator (IPG), the Interstim II, patients with either a dynamic graciloplasty or an abdominally placed IPG for sacral neuromodulation could not undergo surgery to replace their IPG in the case of end of battery life. For these patients, the Medtronic Replacement Adaptor 09106 was created. This retrospective case series aims to study safety and feasibility of the Medtronic Replacement Adaptor 09106 in patients with abdominally placed IPGs.
View Article and Find Full Text PDFBackground: Spinal cord stimulation (SCS) has shown to be an effective treatment for patients with persistent spinal pain syndrome type 2 (PSPS Type 2). The method used to deliver electrical charge in SCS is important. One such method is burst stimulation.
View Article and Find Full Text PDFObjectives: Spinal cord stimulation (SCS) is a last-resort treatment for patients with chronic neuropathic pain. The mechanism underlying SCS and pain relief is not yet fully understood. Because the inflammatory balance between pro- and anti-inflammatory molecules in the spinal nociceptive network is pivotal in the development and maintenance of neuropathic pain, the working mechanism of SCS is suggested to be related to the modulation of this balance.
View Article and Find Full Text PDFNeonatal painful procedures causes acute pain and trigger long-term changes in nociceptive processing and anxiety behavior, highlighting the need for adequate analgesia during this critical time. Spinal serotonergic receptors 5-HT1a and 5-HT3 play an important role in modulating incoming nociceptive signals in neonates. The current study aims to attenuate acute and long-term hypersensitivity associated with neonatal procedural pain using ondansetron (a 5-HT3 antagonist) and buspirone (a 5-HT1a agonist) in a well-established rat model of repetitive needle pricking.
View Article and Find Full Text PDFExcessive noxious stimulation during the critical neonatal period impacts the nociceptive network lasting into adulthood. As descending serotonergic projections from the rostral ventromedial medulla (RVM) to the spinal dorsal horn develop postnatally, this study aims to investigate the long-term effect of repetitive neonatal procedural pain on the descending serotonergic RVM-spinal dorsal horn network. A well-established rat model of repetitive noxious procedures is used in which neonatal rats received four noxious needle pricks or tactile stimulation with a cotton swab per day in the left hind paw from day of birth to postnatal Day 7.
View Article and Find Full Text PDFA growing body of evidence indicates that early-life exposure to selective serotonin reuptake inhibitor has long-term consequences on the offspring's pain in addition to affective disorders like anxiety disorder and major depression. Serotonin, besides its role in regulating pain and emotions, promotes neuronal network formation. The prefrontal cortex and the amygdala are two key brain regions involved in the modulation of pain and its affective comorbidities.
View Article and Find Full Text PDFThe influence of neonatal experiences upon later-life affective behavior is increasingly recognized, but the reported effects on anxiety are often contradictory. The observed effect may depend upon the type of anxiety (state or trait) affected. The current study aims to investigate whether neonatal repetitive needle pricking alters anxiety behavior in adulthood, by assessing both state and trait anxiety in rats.
View Article and Find Full Text PDFSpinal cord stimulation (SCS) as an evidence-based interventional treatment has been used and approved for clinical use in a variety of pathological states including peripheral neuropathic pain; however, until now, it has not been used for the treatment of spinal cord injury- (SCI-) induced central neuropathic pain. This paper reviews the underlying mechanisms of SCS-induced analgesia and its clinical application in the management of peripheral and central neuropathic pain. Evidence from recent research publications indicates that nociceptive processing at peripheral and central sensory systems is thought to be modulated by SCS through (i) inhibition of the ascending nociceptive transmission by the release of analgesic neurotransmitters such as GABA and endocannabinoids at the spinal dorsal horn; (ii) facilitation of the descending inhibition by release of noradrenalin, dopamine, and serotonin acting on their receptors in the spinal cord; and (iii) activation of a variety of supraspinal brain areas related to pain perception and emotion.
View Article and Find Full Text PDFChronic neuropathic pain is a debilitating ordeal for patients worldwide and pharmacological treatment efficacy is still limited. As many pharmacological interventions for neuropathic pain often fail, insights into the underlying mechanism and role of identified receptors is of utmost importance. An important target for improving treatment of neuropathic pain is the descending serotonergic system as these projections modulate nociceptive signaling in the dorsal horn.
View Article and Find Full Text PDFDopamine (DA) is an important modulator in nociception and analgesia. Spinal DA receptors are involved in descending modulation of the nociceptive transmission. Genetic variations within DA neurotransmission have been associated with altered pain sensitivity and development of chronic pain syndromes.
View Article and Find Full Text PDFThe nociceptive network, responsible for transmission of nociceptive signals that generate the pain experience, is not fully developed at birth. Descending serotonergic modulation of spinal nociception, an important part of the pain network, undergoes substantial postnatal maturation and is suggested to be involved in the altered pain response observed in human newborns. This review summarizes preclinical data of the development of descending serotonergic modulation of the spinal nociceptive network across the life span, providing a comprehensive background to understand human newborn pain experience and treatment.
View Article and Find Full Text PDF