Atg8 proteins play a crucial role in autophagy. There is a single Atg8 isoform in yeast, while mammals have up to seven homologs categorized into LC3s and GABARAPs. The GABARAP subfamily consists of GABARAP, GABARAPL1, and GABARAPL2/GATE16, implicated in various stages along the pathway.
View Article and Find Full Text PDFAutophagy is a cellular degradation pathway where double-membrane autophagosomes form de novo to engulf cytoplasmic material destined for lysosomal degradation. This process requires regulated membrane remodeling, beginning with the initial autophagosomal precursor and progressing to its elongation and maturation into a fully enclosed, fusion-capable vesicle. While the core protein machinery involved in autophagosome formation has been extensively studied over the past two decades, the role of phospholipids in this process has only recently been studied.
View Article and Find Full Text PDFAutophagy sequesters cytoplasmic portions into autophagosomes. While selective cargo is engulfed by elongation of cup-shaped isolation membranes (IMs), the morphogenesis of non-selective IMs remains elusive. Based on recent observations, we propose a novel model for autophagosome morphogenesis wherein active regulation of the IM rim serves the physiological roles of autophagy.
View Article and Find Full Text PDFAutophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here, we show that in the budding yeast Saccharomyces cerevisiae, IMs expand while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time.
View Article and Find Full Text PDFThe Atg8 family of ubiquitin-like proteins play pivotal roles in autophagy and other processes involving vesicle fusion and transport where the lysosome/vacuole is the end station. Nuclear roles of Atg8 proteins are also emerging. Here, we review the structural and functional features of Atg8 family proteins and their protein-protein interaction modes in model organisms such as yeast, and to humans.
View Article and Find Full Text PDFAutophagy is an intracellular catabolic process that eliminates cytoplasmic constituents selectively by tight engulfment in an isolation membrane or recycles bulk cytoplasm by nonselective sequestration. Completion of the isolation membrane forms a double membrane vesicle, termed autophagosome, that proceeds to fusion with the lysosome, where the inner membrane and its cytoplasmic content are degraded. Autophagosome biogenesis is unique in that the newly-formed membrane, termed phagophore, is elongated by direct lipid flow from a proximal ER-associated donor membrane.
View Article and Find Full Text PDFHereditary sensory and autonomic neuropathy 9 (HSAN9) is a rare fatal neurological disease caused by mis- and nonsense mutations in the gene encoding for Tectonin β-propeller repeat containing protein 2 (TECPR2). While TECPR2 is required for lysosomal consumption of autophagosomes and ER-to-Golgi transport, it remains elusive how exactly TECPR2 is involved in autophagy and secretion and what downstream sequels arise from defective TECPR2 due to its involvement in these processes. To address these questions, we determine molecular consequences of TECPR2 deficiency along the secretory pathway.
View Article and Find Full Text PDFAutophagy, a conserved eukaryotic intracellular catabolic pathway, maintains cell homeostasis by lysosomal degradation of cytosolic material engulfed in double membrane vesicles termed autophagosomes, which form upon sealing of single-membrane cisternae called phagophores. While the role of phosphatidylinositol 3-phosphate (PI3P) and phosphatidylethanolamine (PE) in autophagosome biogenesis is well-studied, the roles of other phospholipids in autophagy remain rather obscure. Here we utilized budding yeast to study the contribution of phosphatidylcholine (PC) to autophagy.
View Article and Find Full Text PDFThis animated movie presents the mechanism of macroautophagy, hereafter autophagy, by showing the molecular features of the formation of autophagosomes, the hallmark organelle of this intracellular catabolic pathway. It is based on our current knowledge and it also illustrates how autophagosomes can recognize and eliminate selected cargoes.
View Article and Find Full Text PDFMissense mutations in the p53 tumor suppressor abound in human cancer. Common (“hotspot”) mutations endow mutant p53 (mutp53) proteins with oncogenic gain of function (GOF), including enhanced cell migration and invasiveness, favoring cancer progression. GOF is usually attributed to transcriptional effects of mutp53.
View Article and Find Full Text PDFTrends Cell Biol
March 2022
Atg1 phosphoregulates different steps and factors in autophagy. Schreiber et al. report in Molecular Cell on the cell-free identification of a negative feedback ejection of Atg1 from the pre-autophagosomal structure (PAS), followed by positive feedback recruitment of Atg1 to phagophore-resident Atg8-PE, followed by yet another, negative feedback inhibition of the Atg8 conjugation machinery.
View Article and Find Full Text PDFMitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins.
View Article and Find Full Text PDFAutophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies.
View Article and Find Full Text PDFMitochondria are dynamic, multifunctional cellular organelles that play a fundamental role in maintaining cellular homeostasis. Keeping the quality of mitochondria in check is of essential importance for functioning and survival of the cells. Selective autophagic clearance of flawed mitochondria, a process termed mitophagy, is one of the most prominent mechanisms through which cells maintain a healthy mitochondrial pool.
View Article and Find Full Text PDFMutations in the coding sequence of human were recently linked to spastic paraplegia type 49 (SPG49), a hereditary neurodegenerative disorder involving intellectual disability, autonomic-sensory neuropathy, chronic respiratory disease and decreased pain sensitivity. Here, we report the generation of a novel CRISPR-Cas9 knockout () mouse that exhibits behavioral pathologies observed in SPG49 patients. mice develop neurodegenerative patterns in an age-dependent manner, manifested predominantly as neuroaxonal dystrophy in the gracile (GrN) and cuneate nuclei (CuN) of the medulla oblongata in the brainstem and dorsal white matter column of the spinal cord.
View Article and Find Full Text PDFTECPR2 (tectonin beta-propeller repeat containing 2) is a large, multi-domain protein comprised of an amino-terminal WD domain, a middle unstructured region and a carboxy-terminal TEPCR domain comprises of six TECPR repeats followed by a functional LIR motif. Human mutations are linked to spastic paraplegia type 49 (SPG49), a hereditary neurodegenerative disorder. Here we show that basal macroautophagic/autophagic flux is impaired in SPG49 patient fibroblasts in the form of accumulated autophagosomes.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is a dynamic intracellular network responsible for folding and maturation of organellar and secreted proteins. Selective autophagy of ER (ER-phagy) is emerging as an essential process that maintains proteostasis in the ER and is regulated by growth conditions. In this issue, Cinque et al (2020) show that fibroblast growth factor 18 (FGF18) specifically activates ER-phagy through a TFEB/TFE-dependent transcriptional regulation of the ER-phagy receptor Fam134b, a process essential for bone ossification and skeletal development.
View Article and Find Full Text PDFThe NIH-funded center for autophagy research named Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center is now completing its second year as a working center with a mission to promote autophagy research locally, nationally, and internationally. The center has thus far supported a cadre of 6 junior faculty (mentored PIs; mPIs) at a near-R01 level of funding. Two mPIs have graduated by obtaining their independent R01 funding and 3 of the remaining 4 have won significant funding from NIH in the form of R21 and R56 awards.
View Article and Find Full Text PDF