Publications by authors named "Elander R"

Recent publications have shown the benefits of deacetylation disc-refining (DDR) as a pretreatment process to deconstruct biomass into sugars and lignin residues. Major advantages of DDR pretreatment over steam and dilute acid pretreatment are the removal of acetyl and lignin during deacetylation. DDR does not generate hydroxymethylfurfural (HMF) and furfural which are commonly produced from steam and dilute acid pretreatments.

View Article and Find Full Text PDF

Background: Dilute acid pretreatment is a promising process technology for the deconstruction of low-lignin lignocellulosic biomass, capable of producing high yields of hemicellulosic sugars and enhancing enzymatic yields of glucose as part of a biomass-to-biofuels process. However, while it has been extensively studied, most work has historically been conducted at relatively high acid concentrations of 1 - 4% (weight/weight). Reducing the effective acid loading in pretreatment has the potential to reduce chemical costs both for pretreatment and subsequent neutralization.

View Article and Find Full Text PDF

Background: Our companion paper discussed the yield benefits achieved by integrating deacetylation, mechanical refining, and washing with low acid and low temperature pretreatment. To evaluate the impact of the modified process on the economic feasibility, a techno-economic analysis (TEA) was performed based on the experimental data presented in the companion paper.

Results: The cost benefits of dilute acid pretreatment technology combined with the process alternatives of deacetylation, mechanical refining, and pretreated solids washing were evaluated using cost benefit analysis within a conceptual modeling framework.

View Article and Find Full Text PDF

Enzymatic conversion of oligomeric xylose and insoluble xylan remaining after effective pretreatment offers significant potential to improve xylan-to-xylose yields while minimizing yields of degredation products and fermentation inhibitors. In this work, a commercial enzyme cocktail is demonstrated to convert up to 70 % of xylo-oligomers found in dilute acid-pretreated hydrolyzate liquor at varying levels of dilution when supplemented with accessory enzymes targeting common side chains. Commercial enzyme cocktails are also shown to convert roughly 80 % of insoluble xylan remaining after effective high-solids, dilute acid pretreatment.

View Article and Find Full Text PDF

Six biomass pretreatment processes to convert switchgrass to fermentable sugars and ultimately to cellulosic ethanol are compared on a consistent basis in this technoeconomic analysis. The six pretreatment processes are ammonia fiber expansion (AFEX), dilute acid (DA), lime, liquid hot water (LHW), soaking in aqueous ammonia (SAA), and sulfur dioxide-impregnated steam explosion (SO(2)). Each pretreatment process is modeled in the framework of an existing biochemical design model so that systematic variations of process-related changes are consistently captured.

View Article and Find Full Text PDF

Dilute sulfuric acid (DA), sulfur dioxide (SO(2)), liquid hot water (LHW), soaking in aqueous ammonia (SAA), ammonia fiber expansion (AFEX), and lime pretreatments were applied to Alamo, Dacotah, and Shawnee switchgrass. Application of the same analytical methods and material balance approaches facilitated meaningful comparisons of glucose and xylose yields from combined pretreatment and enzymatic hydrolysis. Use of a common supply of cellulase, beta-glucosidase, and xylanase also eased comparisons.

View Article and Find Full Text PDF

Feedstock quality of switchgrass for biofuel production depends on many factors such as morphological types, geographic origins, maturity, environmental and cultivation parameters, and storage. We report variability in compositions and enzymatic digestion efficiencies for three cultivars of switchgrass (Alamo, Dacotah and Shawnee), grown and harvested at different locations and seasons. Saccharification yields of switchgrass processed by different pretreatment technologies (AFEX, dilute sulfuric acid, liquid hot water, lime, and soaking in aqueous ammonia) are compared in regards to switchgrass genotypes and harvest seasons.

View Article and Find Full Text PDF

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.

View Article and Find Full Text PDF
Article Synopsis
  • Several enzymes, including Accellerase 1000 and Multifect xylanase, were tested for their efficiency in breaking down different types of cellulose and xylan derived from various pretreatments of switchgrass and other cellulose materials.
  • Significant sugar release patterns were observed, highlighting the accumulation of xylooligomers during xylan hydrolysis, which negatively impacted cellulase activity by inhibiting cellulase adsorption.
  • The effectiveness of switchgrass digestion after pretreatment varied, and while initial hydrolysis rates aligned well with cellulase adsorption for most pretreatments, further research is needed to better understand the relationship between digestibility and the physical/compositional characteristics of the pretreated materials.
View Article and Find Full Text PDF

The US Department of Energy-funded Biomass Refining CAFI (Consortium for Applied Fundamentals and Innovation) project has developed leading pretreatment technologies for application to switchgrass and has evaluated their effectiveness in recovering sugars from the coupled operations of pretreatment and enzymatic hydrolysis. Key chemical and physical characteristics have been determined for pretreated switchgrass samples. Several analytical microscopy approaches utilizing instruments in the Biomass Surface Characterization Laboratory (BSCL) at the National Renewable Energy Laboratory (NREL) have been applied to untreated and CAFI-pretreated switchgrass samples.

View Article and Find Full Text PDF
Article Synopsis
  • The project evaluated six chemical pretreatments for switchgrass, analyzing effectiveness in solubilizing glucan and xylan.
  • Over two-thirds of these sugars were solubilized, with lime, post-washed LHW, and SO(2) achieving over 83% glucose yields.
  • The study found that lower pH pretreatments increased xylose yield and that careful temperature and time management is crucial for maximizing sugar release.
View Article and Find Full Text PDF

The objective of this work is to investigate the effects of cellulase loading and β-glucosidase supplementation on enzymatic hydrolysis of pretreated Dacotah switchgrass. To assess the difference among various pretreatment methods, the profiles of sugars and intermediates were determined for differently treated substrates. For all pretreatments, 72 h glucan/xylan digestibilities increased sharply with enzyme loading up to 25mg protein/g-glucan, after which the response varied depending on the pretreatment method.

View Article and Find Full Text PDF

This work studied the benefits of adding different enzyme cocktails (cellulase, xylanase, β-glucosidase) to pretreated switchgrass. Pretreatment methods included ammonia fiber expansion (AFEX), dilute-acid (DA), liquid hot water (LHW), lime, lime+ball-milling, soaking in aqueous ammonia (SAA), and sulfur dioxide (SO(2)). The compositions of the pretreated materials were analyzed and showed a strong correlation between initial xylan composition and the benefits of xylanase addition.

View Article and Find Full Text PDF

Through a Biomass Refining Consortium for Applied Fundamentals and Innovation among Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, Texas A&M University, the University of British Columbia, and the University of California at Riverside, leading pretreatment technologies based on ammonia fiber expansion, aqueous ammonia recycle, dilute sulfuric acid, lime, neutral pH, and sulfur dioxide were applied to a single source of poplar wood, and the remaining solids from each technology were hydrolyzed to sugars using the same enzymes. Identical analytical methods and a consistent material balance methodology were employed to develop comparative performance data for each combination of pretreatment and enzymes. Overall, compared to data with corn stover employed previously, the results showed that poplar was more recalcitrant to conversion to sugars and that sugar yields from the combined operations of pretreatment and enzymatic hydrolysis varied more among pretreatments.

View Article and Find Full Text PDF

Pretreatment experiments were carried out to demonstrate high xylose yields at high solids loadings in two different batch pretreatment reactors under process-relevant conditions. Corn stover was pretreated with dilute sulfuric acid using a 4-l Steam Digester and a 4-l stirred ZipperClave reactor. Solids were loaded at 45% dry matter (wt/wt) after sulfuric acid catalyst impregnation using nominal particle sizes of either 6 or 18 mm.

View Article and Find Full Text PDF

The rheological characteristics of untreated and dilute acid pretreated corn stover (CS) slurries at high solids concentrations were studied under continuous shear using plate-plate type measurements. Slurry rheological behavior was examined as a function of insoluble solids concentration (10-40%), extent of pretreatment (0-75% removal of xylan) and particle size (-20 and -80 mesh). Results show that CS slurries exhibit shear-thinning behavior describable using a Casson model.

View Article and Find Full Text PDF

Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF).

View Article and Find Full Text PDF

Effectively releasing the locked polysaccharides from recalcitrant lignocellulose to fermentable sugars is among the greatest technical and economic barriers to the realization of lignocellulose biorefineries because leading lignocellulose pre-treatment technologies suffer from low sugar yields, and/or severe reaction conditions, and/or high cellulase use, narrow substrate applicability, and high capital investment, etc. A new lignocellulose pre-treatment featuring modest reaction conditions (50 degrees C and atmospheric pressure) was demonstrated to fractionate lignocellulose to amorphous cellulose, hemicellulose, lignin, and acetic acid by using a non-volatile cellulose solvent (concentrated phosphoric acid), a highly volatile organic solvent (acetone), and water. The highest sugar yields after enzymatic hydrolysis were attributed to no sugar degradation during the fractionation and the highest enzymatic cellulose digestibility ( approximately 97% in 24 h) during the hydrolysis step at the enzyme loading of 15 filter paper units of cellulase and 60 IU of beta-glucosidase per gram of glucan.

View Article and Find Full Text PDF

A novel method of producing food-grade xylooligosaccharides from corn stover and corn cobs was investigated. The process starts with pretreatment of feedstock in aqueous ammonia, which results delignified and xylan-rich substrate. The pretreated substrates are subjected to enzymatic hydrolysis of xylan using endoxylanase for production of xylooligosaccharides.

View Article and Find Full Text PDF

Biological processing of cellulosic biomass to fuels and chemicals would open up major new agricultural markets and provide powerful societal benefits, but pretreatment operations essential to economically viable yields have a major impact on costs and performance of the entire system. However, little comparative data is available on promising pretreatments. To aid in selecting appropriate systems, leading pretreatments based on ammonia explosion, aqueous ammonia recycle, controlled pH, dilute acid, flowthrough, and lime were evaluated in a coordinated laboratory program using a single source of corn stover, the same cellulase enzyme, shared analytical methods, and common data interpretation approaches to make meaningful comparisons possible for the first time.

View Article and Find Full Text PDF

Five pretreatment processes (dilute acid, hot water, ammonia fiber explosion (AFEX), ammonia recycle percolation (ARP), and lime) for the liberation of sugars from corn stover are compared on a consistent basis. Each pretreatment process model was embedded in a full bioethanol facility model so that systematic effects for variations in pretreatment were accounted in the overall process. Economic drivers influenced by pretreatment are yield of both five and six carbon sugars, solids concentration, enzyme loading and hemicellulase activity.

View Article and Find Full Text PDF

For the first time, a single source of cellulosic biomass was pretreated by leading technologies using identical analytical methods to provide comparative performance data. In particular, ammonia explosion, aqueous ammonia recycle, controlled pH, dilute acid, flowthrough, and lime approaches were applied to prepare corn stover for subsequent biological conversion to sugars through a Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) among Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, and Texas A&M University. An Agricultural and Industrial Advisory Board provided guidance to the project.

View Article and Find Full Text PDF

We have previously demonstrated that pretreatment of corn stover with dilute sulfuric acid can achieve high digestibility and efficient recovery of hemicellulose sugars with high yield and concentration. Further improvement of this process was sought in this work. A modification was made in the operation of the percolation reactor that the reactor is preheated under atmospheric pressure to remove moisture that causes autohydrolysis.

View Article and Find Full Text PDF

Cellulosic plant material represents an as-of-yet untapped source of fermentable sugars for significant industrial use. Many physio-chemical structural and compositional factors hinder the enzymatic digestibility of cellulose present in lignocellulosic biomass. The goal of any pretreatment technology is to alter or remove structural and compositional impediments to hydrolysis in order to improve the rate of enzyme hydrolysis and increase yields of fermentable sugars from cellulose or hemicellulose.

View Article and Find Full Text PDF

Pretreatment of corn stover by dilute sulfuric acid was investigated using a laboratory percolation (flowthrough) reactor operated under high-solids conditions. The effects of reaction conditions and operating parameters on the performance of the percolation reactor were investigated seeking the optimal range in which acceptable levels of yield and sugar concentration could be attained. It was demonstrated that 70-75% recovery of xylose and 6 to 7% (w/w) xylose concentration were attainable.

View Article and Find Full Text PDF