Publications by authors named "Elanchezhiyan S"

This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.

View Article and Find Full Text PDF

The fabrication of all-solid-state Z-scheme sonophotocatalysts is vital for improving the transfer rate of photogenerated electrons to remove antibiotics present in wastewater. Herein, a novel indirect Z-scheme ZnFe-layered double hydroxide (LDH)/reduced graphene oxide (rGO)/graphitic carbon nitride (g-CN) heterojunction was synthesized using a simple strategy. The ZnFe-LDH/rGO/g-CN (ZF@rGCN) ternary composites were systematically characterized using different techniques.

View Article and Find Full Text PDF

Rapid industrial expansion leads to environmental pollution especially in an aqueous environment. Photocatalytic degradation is one of the most efficient and environmentally friendly techniques used to treat industrial pollution due to its complete degradation capability of a variety of water contaminants to their non-toxic state. Graphitic carbon nitride (gCN) and molybdenum disulfide (MoS) provide efficient dye degradation, but MoS has few disadvantages.

View Article and Find Full Text PDF

Due to numerous applications and excellent environmental stability, long-chain perfluorinated chemicals (PFCs) are ubiquitous in water across the world and adversely affect the living organisms. Thus, this study focused on the mitigation of the most frequently used long-chain PFCs namely perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) from water using reduced graphene oxide modified zinc ferrite immobilized chitosan beads (rGO-ZF@CB) as an adsorbent. The results from the adsorption isotherm and kinetic studies revealed that the adsorption data fitted well to the Langmuir and the pseudo-second-order models.

View Article and Find Full Text PDF

The presence of organic dye molecules and heavy metal ions in water causes ecological and public health problems. Therefore, remediation of water/wastewater contaminated with organic dye molecules and toxic metal ions is of importance. Herein, a reduced graphene oxide (RGO)-hydroxyapatite (Hat) (1D-2D) hybrid composite was fabricated through a hydrothermal process and applied for the adsorption of methyl orange (MO) and hexavalent chromium (Cr(VI)) from water.

View Article and Find Full Text PDF

In recent decades, magnetic bead material has attracted considerable attention in water and wastewater purification. In this study, the potential of magnetic kaolinite immobilized in chitosan beads (MKa@CB) to remove Pb(II) and Cd(II) ions from an aqueous environment has been successfully investigated. The addition of magnetic kaolinite generates more active sites, whereas that of chitosan enhances the stability of synthesized bead materials, which enable them to effectively interact with the targeted contaminants.

View Article and Find Full Text PDF

Contaminated waters with high contents of toxic anions are detrimental to the human health and wildlife. Thus, the quality of drinking water should be carefully monitored. Adsorption technique has been determined to be a reasonable strategy out of several methods used to remove toxic anions from water.

View Article and Find Full Text PDF

Herein, synthesized and compared the three different kinds of hybrid bio-polymeric composites viz., lanthanum embedded chitosan/gelatin (La@CS-GEL), zirconium embedded chitosan/gelatin (Zr@CS-GEL) and cerium embedded chitosan/gelatin (Ce@CS-GEL) in terms of their oil uptake efficiency. The adsorption efficiency was studied under various optimized parameters like contact time, pH, dose, initial oil concentration and temperature.

View Article and Find Full Text PDF

The recovery of oil from oil-in-water emulsion has been investigated using chitosan/magnesium-aluminium layered double hydroxide hybrid composite (CS-LDHCs) by a single co-precipitation method. Resulting better adsorption efficiency of CS-LDHCs could be observed, indicating the synthesized material was effective to adsorb oil particles from oil-in-water emulsion at acidic pH (pH 3.0) than as-prepared LDH and raw chitosan.

View Article and Find Full Text PDF

The aim of this work is to gain a better understanding of the formation of lanthanum complex onto iminodiacetic acid and chitosan (CS@La-IDAMP) composite for effective removal of fluoride from aqueous solution using a tea-bag model for the first time. The surface textural and chemical properties of the synthesized composites were characterized by FTIR, SEM with EDAX and mapping images. The experimental data revealed that the fluoride adsorption was rapid, maximum fluoride removal could be removed within 12min contact time at neutral pH in room temperature under batch equilibrium model.

View Article and Find Full Text PDF

Recovery of oil from oil-in-water emulsion has been investigated by many scientists and it continues to be a challenging task for environmental scientists so far. Among all the techniques, adsorption is found to be an appropriate process for the removal of oil from oil-in-water emulsion owing to its high efficiency and easy operation. A hybrid material, zirconium-chitosan composite (Zr-CS-HC) was prepared to remove the oil from oil-in-water emulsion and oil was measured by extractive gravimetric method.

View Article and Find Full Text PDF

Introduction: Anti-microbial therapy is essential along with conventional therapy in the management of periodontal disease. Instead of systemic chemical agents, herbal products could be used as antimicrobial agents. Herbal local drug delivery systems are effective alternative for systemic therapy in managing the chronic periodontal disease.

View Article and Find Full Text PDF

In the present study, it is aimed to identify, a low cost sorbent for the recovery of oil from oil-in-water emulsion using biopolymers such as chitin and chitosan. Chitin has the greater adsorption capacity than chitosan due to its hydrophobic nature. The characterizations of chitin and chitosan were done using FTIR, SEM, EDAX, XRD, TGA and DSC techniques.

View Article and Find Full Text PDF

Medical emergencies in dental practices are common, and specific training and skills are needed to manage the situations. Dental curricula provide training in basic life support in medical emergency management. In India, the internship is the final stage before graduation, and the interns are future practitioners.

View Article and Find Full Text PDF

Background: Probably microbial plaque is the main etiology for periodontal tissue inflammation. Various chemical agents have been evaluated over the years with respect to their antimicrobial effects in the oral cavity. However, all are associated with side effects that prohibit regular long-term use.

View Article and Find Full Text PDF

Laser-assisted surgery is common nowadays and most of the oral soft tissue surgical procedures are done with lasers. Among the commonly available lasers today, the diode laser is the one frequently used one in dentistry. Bleeding control, visibility, and better tissue manipulation are some of the advantages of the laser.

View Article and Find Full Text PDF