The capability to reprogram human somatic cells to induced pluripotent stem cells (iPSCs) has opened a new area of biology and provides unprecedented access to patient-specific iPSCs for drug screening, disease models, and transplantation therapies. Although the process of obtaining iPSC lines is technically simple, reprogramming is a slow and inefficient process consisting of a largely uncharacterized chain of molecular events. To date, researchers have reported a wide range of reprogramming efficiencies, from <0.
View Article and Find Full Text PDFThe correlation of gene and protein expression changes in biological systems has been hampered by the need for separate sample handling and analysis platforms for nucleic acids and proteins. In contrast to the simple, rapid, and flexible workflow of quantitative PCR (qPCR) methods, which enable characterization of several classes of nucleic acid biomarkers (i.e.
View Article and Find Full Text PDFHigh-throughput screening (HTS) for potential anticancer agents requires a broad portfolio of assay platforms that may include kinase enzyme assays, protein-protein binding assays, and functional cell-based apoptosis assays. The authors have explored the use of fluorometric microvolume assay technology (the FMAT 8100 HTS System) in three distinct homogeneous HTS assays: (1). a Src tyrosine kinase enzyme assay, (2).
View Article and Find Full Text PDF