Publications by authors named "Elan J Grossman"

There is growing alarm in the United States about an epidemiologically large occurrence of mild traumatic brain injury with serious long lasting consequences. Although conventional imaging has been unable to identify damage capable of explaining its organic origin or discerning patients at risk of developing long-term or permanently disabling neurological impairment, most disease models assume that diffuse axonal injury in white matter must be present but is difficult to resolve. The few histopathological investigations conducted, however, show only limited evidence of such damage, which cannot account for the stereotypical globalized nature of symptoms generally reported in patients.

View Article and Find Full Text PDF

Diffusion MRI combined with biophysical modeling allows for the description of a white matter (WM) fiber bundle in terms of compartment specific white matter tract integrity (WMTI) metrics, which include intra-axonal diffusivity (Daxon), extra-axonal axial diffusivity (De||), extra-axonal radial diffusivity (De┴), axonal water fraction (AWF), and tortuosity (α) of extra-axonal space. Here we derive these parameters from diffusion kurtosis imaging to examine their relationship to concentrations of global WM N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho) and myo-Inositol (mI), as measured with proton MR spectroscopy ((1)H-MRS), in a cohort of 25 patients with mild traumatic brain injury (MTBI). We found statistically significant (p<0.

View Article and Find Full Text PDF

Mild traumatic brain injury (MTBI) is difficult to accurately assess with conventional imaging because such approaches usually fail to detect any evidence of brain damage. Recent studies of MTBI patients using diffusion-weighted imaging and diffusion tensor imaging suggest that these techniques have the potential to help grade tissue damage severity, track its development, and provide prognostic markers for clinical outcome. Although these results are promising and indicate that the forensic diagnosis of MTBI might eventually benefit from the use of diffusion-weighted imaging and diffusion tensor imaging, healthy skepticism and caution should be exercised with regard to interpreting their meaning because there is no consensus about which methods of data analysis to use and very few investigations have been conducted, of which most have been small in sample size and examined patients at only one time point after injury.

View Article and Find Full Text PDF

Conventional imaging is unable to detect damage that accounts for permanent cognitive impairment in patients with mild traumatic brain injury (mTBI). While diffusion tensor imaging (DTI) can help to detect diffuse axonal injury (DAI), it is a limited indicator of tissue complexity. It has also been suggested that the thalamus may play an important role in the development of clinical sequelae in mTBI.

View Article and Find Full Text PDF

Objective: To assess cerebral blood flow (CBF) changes in patients with mild traumatic brain injury (MTBI) using an arterial spin labelling (ASL) perfusion MRI and to investigate the severity of neuropsychological functional impairment with respect to haemodynamic changes.

Materials And Methods: Twenty-one patients with MTBI and 20 healthy controls were studied at 3T MR. The median time since the onset of brain injury in patients was 24.

View Article and Find Full Text PDF

Purpose: To study the feasibility of using the MRI technique of segmented true-fast imaging with steady-state precession arterial spin-labeling (True-FISP ASL) for the noninvasive measurement and quantification of local perfusion in cerebral deep gray matter at 3T.

Materials And Methods: A flow-sensitive alternating inversion-recovery (FAIR) ASL perfusion preparation was used in which the echo-planar imaging (EPI) readout was replaced with a segmented True-FISP data acquisition strategy. The absolute perfusion for six selected regions of deep gray matter (left and right thalamus, putamen, and caudate) were calculated in 11 healthy human subjects (six male, five female; mean age = 35.

View Article and Find Full Text PDF