Publications by authors named "Elaine Y Hsiao"

Research over the past two decades has established a remarkable ability of the gut microbiota to modulate brain activity and behaviour. Conversely, signals from the brain can influence the composition and function of the gut microbiota. This bidirectional communication across the gut microbiota-brain axis, involving multiple biochemical and cellular mediators, is recognized as a major brain-body network that integrates cues from the environment and the body's internal state.

View Article and Find Full Text PDF

The molecular underpinnings behind the diet-microbiome-host health relationship are largely undescribed. In a recent issue of Science, Cheng et al. uncovered one piece of the puzzle by describing a novel fatty acid amide hydrolase (FAAH) derived from a Faecalibacterium prausnitzii strain that correlated with improved malnutrition recovery.

View Article and Find Full Text PDF

The gut microbiome is emerging as an important modulator of the anti-seizure effects of the classic ketogenic diet. However, many variations of the ketogenic diet are used clinically to treat refractory epilepsy, and how different dietary formulations differentially modify the gut microbiome in ways that impact seizure outcome is poorly understood. We find that clinically prescribed ketogenic infant formulas vary in macronutrient ratio, fat source, and fiber content and also in their ability to promote resistance to 6-Hz psychomotor seizures in mice.

View Article and Find Full Text PDF

Gastrointestinal (GI) disruptions and inflammatory bowel disease (IBD) are commonly associated with Parkinson's disease (PD), but how they may impact risk for PD remains poorly understood. Herein, we provide evidence that prodromal intestinal inflammation expedites and exacerbates PD endophenotypes in rodent carriers of the human PD risk allele LRRK2 G2019S in a sex-dependent manner. Chronic intestinal damage in genetically predisposed male mice promotes α-synuclein aggregation in the substantia nigra, loss of dopaminergic neurons and motor impairment.

View Article and Find Full Text PDF

The gut microbiota interacts directly with dietary nutrients and has the ability to modify host feeding behavior, but the underlying mechanisms remain poorly understood. Select gut bacteria digest complex carbohydrates that are non-digestible by the host and liberate metabolites that serve as additional energy sources and pleiotropic signaling molecules. Here we use a gnotobiotic mouse model to examine how differential fructose polysaccharide metabolism by commensal gut bacteria influences host preference for diets containing these carbohydrates.

View Article and Find Full Text PDF

Unlabelled: The vagus nerve is proposed to enable communication between the gut microbiome and brain, but activity-based evidence is lacking. Herein, we assess the extent of gut microbial influences on afferent vagal activity and metabolite signaling mechanisms involved. We find that mice reared without microbiota (germ-free, GF) exhibit decreased vagal afferent tone relative to conventionally colonized mice (specific pathogen-free, SPF), which is reversed by colonization with SPF microbiota.

View Article and Find Full Text PDF

The gut microbiome modulates seizure susceptibility and the anti-seizure effects of the ketogenic diet (KD) in animal models, but whether these relationships translate to KD therapies for human epilepsy is unclear. We find that the clinical KD alters gut microbial function in children with refractory epilepsy. Colonizing mice with KD-associated microbes promotes seizure resistance relative to matched pre-treatment controls.

View Article and Find Full Text PDF

The maternal microbiome is an important regulator of gestational health, but how it affects the placenta as the interface between mother and fetus remains unexplored. Here, we show that the maternal gut microbiota supports placental development in mice. Depletion of the maternal gut microbiota restricts placental growth and impairs feto-placental vascularization.

View Article and Find Full Text PDF

Bacteria from the Turicibacter genus are prominent members of the mammalian gut microbiota and correlate with alterations in dietary fat and body weight, but the specific connections between these symbionts and host physiology are poorly understood. To address this knowledge gap, we characterize a diverse set of mouse- and human-derived Turicibacter isolates, and find they group into clades that differ in their transformations of specific bile acids. We identify Turicibacter bile salt hydrolases that confer strain-specific differences in bile deconjugation.

View Article and Find Full Text PDF

The gut microbiota modulates neurobiological activity in various animal lineages. This is often proposed to occur through interactions with neurotransmitters and other neuromodulatory molecules in the host. Our commentary will discuss recent research that establishes microbiota-neurotransmitter connections, gaps in current understanding, and outstanding questions that may guide future advances in the field of microbiota-nervous system interactions.

View Article and Find Full Text PDF

The maternal microbiome is an important regulator of gestational health, but how it impacts the placenta as the interface between mother and fetus remains unexplored. Here we show that the maternal gut microbiota supports placental development in mice. Depletion of the maternal gut microbiota restricts placental growth and impairs feto-placental vascularization.

View Article and Find Full Text PDF

The gut microbiota is implicated in risk for Alzheimer's disease (AD). A study in Science reports that depleting gut bacteria in mice with genetic risk for AD reduces neuropathology in a sex-dependent manner. This is reversed by administering short-chain fatty acids, suggesting that specific bacterial metabolites increase susceptibility to AD.

View Article and Find Full Text PDF

The gut microbiota regulates host metabolism and feeding behavior. A new study shows that microbiota depletion leads to sucrose overconsumption and increases motivation to obtain sucrose in mice, suggesting that the gut microbiota suppresses overconsumption of palatable foods.

View Article and Find Full Text PDF

Epilepsy is one of the most common neurological diseases globally, afflicting approximately 50 million people worldwide. While many antiepileptic drugs exist, an estimated one-third of individuals do not respond to available medications. The high fat, low carbohydrate ketogenic diet (KD) has been used to treat refractory epilepsy in cases when existing antiepileptic drugs fail.

View Article and Find Full Text PDF

Microbial source tracking analysis has emerged as a widespread technique for characterizing the properties of complex microbial communities. However, this analysis is currently limited to source environments sampled in a specific study. In order to expand the scope beyond one single study and allow the exploration of source environments using large databases and repositories, such as the Earth Microbiome Project, a source selection procedure is required.

View Article and Find Full Text PDF

Alterations in the gut microbiome have been associated with autism spectrum disorder (ASD), but whether they are a cause, effect, or confounder remains unclear. In a recent issue of , Yap and colleagues report that ASD-associated microbiota changes are likely a consequence of low diet diversity..

View Article and Find Full Text PDF

The gut microbiome influences many host physiologies, spanning gastrointestinal function, metabolism, immune homeostasis, neuroactivity, and behavior. Many microbial effects on the host are orchestrated by bidirectional interactions between the microbiome and immune system. Imbalances in this dialogue can lead to immune dysfunction and immune-mediated conditions in distal organs including the brain.

View Article and Find Full Text PDF

The brain and gastrointestinal tract are critical sensory organs responsible for detecting, relaying, integrating, and responding to signals derived from the internal and external environment. At the interface of this sensory function, immune cells in the intestines and brain consistently survey environmental factors, eliciting responses that inform on the physiological state of the body. Recent research reveals that cross-talk along the gut-brain axis regulates inflammatory nociception, inflammatory responses, and immune homeostasis.

View Article and Find Full Text PDF

Many genetic and environmental factors increase susceptibility to cognitive impairment (CI), and the gut microbiome is increasingly implicated. However, the identity of gut microbes associated with CI risk, their effects on CI, and their mechanisms remain unclear. Here, we show that a carbohydrate-restricted (ketogenic) diet potentiates CI induced by intermittent hypoxia in mice and alters the gut microbiota.

View Article and Find Full Text PDF

Malnutrition refers to a dearth, excess, or altered differential ratios of calories, macronutrients, or micronutrients. Malnutrition, particularly during early life, is a pressing global health and socioeconomic burden that is increasingly associated with neurodevelopmental impairments. Understanding how perinatal malnutrition influences brain development is crucial to uncovering fundamental mechanisms for establishing behavioral neurocircuits, with the potential to inform public policy and clinical interventions for neurodevelopmental conditions.

View Article and Find Full Text PDF

Alterations in the brain-gut system have been implicated in various disease states, but little is known about how early-life adversity (ELA) impacts development and adult health as mediated by brain-gut interactions. We hypothesize that ELA disrupts components of the brain-gut system, thereby increasing susceptibility to disordered mood. In a sample of 128 healthy adult participants, a history of ELA and current stress, depression, and anxiety were assessed using validated questionnaires.

View Article and Find Full Text PDF

The gut microbiota has the capacity to affect host appetite via intestinal satiety pathways, as well as complex feeding behaviors. In this Review, we highlight recent evidence that the gut microbiota can modulate food preference across model organisms. We discuss effects of the gut microbiota on the vagus nerve and brain regions including the hypothalamus, mesolimbic system, and prefrontal cortex, which play key roles in regulating feeding behavior.

View Article and Find Full Text PDF