The influence of different air entrainment conditions on the emissions of particulate matter from fire whirls was investigated by igniting a diesel fuel pool, 0.7 m in diameter, within a four-walled enclosure. Four different natural entrainment conditions resulted when gap sizes in the walls were varied between 0.
View Article and Find Full Text PDFThe blue whirl is a small, stable, spinning blue flame that evolved spontaneously in recent laboratory experiments while studying turbulent, sooty fire whirls. It burns a range of different liquid hydrocarbon fuels cleanly with no soot production, presenting a previously unknown potential way for low-emission combustion. Here, we use numerical simulations to present the flame and flow structure of the blue whirl.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2016
Fire whirls are powerful, spinning disasters for people and surroundings when they occur in large urban and wildland fires. Whereas fire whirls have been studied for fire-safety applications, previous research has yet to harness their potential burning efficiency for enhanced combustion. This article presents laboratory studies of fire whirls initiated as pool fires, but where the fuel sits on a water surface, suggesting the idea of exploiting the high efficiency of fire whirls for oil-spill remediation.
View Article and Find Full Text PDFThe motivation for devoting a Theme Issue to explosions is discussed. As subsequent articles in the issue are written with the assumption that the reader has had a certain amount of previous exposure to the subject, some of the history and necessary background information are presented here. The topics on explosions that will be encountered in the remaining articles are previewed.
View Article and Find Full Text PDFA deflagration-to-detonation transition (DDT) can occur in environments ranging from experimental and industrial systems to astrophysical thermonuclear (type Ia) supernovae explosions. Substantial progress has been made in explaining the nature of DDT in confined systems with walls, internal obstacles, or preexisting shocks. It remains unclear, however, whether DDT can occur in unconfined media.
View Article and Find Full Text PDFA computational "toolbox" for the a priori design of optimized microfluidic components is presented. These components consist of a microchannel under low-Reynolds number, pressure-driven flow, with an arrangement of grooves cut into the top and bottom to generate a tailored cross-channel flow. An advection map for each feature (i.
View Article and Find Full Text PDFA new microfluidic mixer is presented consisting of a rectangular channel with grooves placed in the top and bottom. This not only increases the driving force behind the lateral flow, but allows for the formation of advection patterns that cannot be created with structures on the bottom alone. Chevrons, pointing in opposite directions on the top and bottom, are used to create a pair of vortices positioned side by side.
View Article and Find Full Text PDFWe study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf.
View Article and Find Full Text PDFLarge-scale, three-dimensional numerical simulations of the deflagration stage of a thermonuclear supernova explosion show the formation and evolution of a highly convoluted turbulent flame in the gravitational field of an expanding carbon-oxygen white dwarf. The flame dynamics are dominated by the gravity-induced Rayleigh-Taylor instability that controls the burning rate. The thermonuclear deflagration releases enough energy to produce a healthy explosion.
View Article and Find Full Text PDF