Patients with acute myeloid leukemia (AML) often achieve remission after allogeneic hematopoietic cell transplantation (allo-HCT) but subsequently die of relapse driven by leukemia cells resistant to elimination by allogeneic T cells based on decreased major histocompatibility complex II (MHC-II) expression and apoptosis resistance. Here we demonstrate that mouse-double-minute-2 (MDM2) inhibition can counteract immune evasion of AML. MDM2 inhibition induced MHC class I and II expression in murine and human AML cells.
View Article and Find Full Text PDFSignaling through the T cell receptor (TCR) controls adaptive immune responses. Antigen binding to TCRαβ transmits signals through the plasma membrane to induce phosphorylation of the CD3 cytoplasmic tails by incompletely understood mechanisms. Here we show that cholesterol bound to the TCRβ transmembrane region keeps the TCR in a resting, inactive conformation that cannot be phosphorylated by active kinases.
View Article and Find Full Text PDFIn the current issue of Immunity, Martínez-Martín et al. (2011) describe the central supramolecular activation cluster (cSMAC) as a site of clathrin-independent T cell receptor (TCR) internalization and trogocytosis. Further, they identify small Rho GTPases TC21 and RhoG as key mediators of these processes.
View Article and Find Full Text PDFAntigen binding to the B-cell antigen receptor (BCR) leads to receptor triggering and B-lymphocyte activation. Here, we have probed the molecular requirements for BCR triggering in primary murine B cells using a set of defined soluble haptenated peptides. Bi- and trivalent haptens activated the BCR, as measured by protein phosphorylation, Ca(2+) influx, BCR down-modulation and CD69, CD86 and MHC class II up-regulation.
View Article and Find Full Text PDFVaccination techniques have developed rapidly over the last several decades from the immunization with live attenuated pathogens to the use of peptide and DNA subunit vaccines, from the use of classical adjuvants to cell-directed delivery. Vaccination techiques are also under investigation for the treatment of tumors and autoimmune diseases. However, profound knowledge of activation mechanisms of the immune cells on a molecular level is prerequisite for a better understanding of the immune response, and for the development of effective immunomodulatory tools.
View Article and Find Full Text PDF