Publications by authors named "Elaine O Davis"

In Mycobacterium tuberculosis, the genes Rv1954A-Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin-antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To investigate the function of the higBA locus, effects of toxin expression on mycobacterial growth and transcript levels were assessed in M.

View Article and Find Full Text PDF

The DNA damage response is crucial for bacterial survival. The transcriptional repressor LexA is a key component of the SOS response, the main mechanism for the regulation of DNA repair genes in many bacteria. In contrast, in mycobacteria gene induction by DNA damage is carried out by two mechanisms; a relatively small number of genes are thought to be regulated by LexA, and a larger number by an alternate, independent mechanism.

View Article and Find Full Text PDF

Mycobacterium tuberculosis survives and replicates in macrophages, where it is exposed to reactive oxygen and nitrogen species that damage DNA. In this study, we investigated the roles of UvrA and UvrD1, thought to be parts of the nucleotide excision repair pathway of M. tuberculosis.

View Article and Find Full Text PDF

The ESX-1 secretion system of Mycobacterium tuberculosis has to be precisely regulated since the secreted proteins, although required for a successful virulent infection, are highly antigenic and their continued secretion would alert the immune system to the infection. The transcription of a five-gene operon containing espACD-Rv3613c-Rv3612c, which is required for ESX-1 secretion and is essential for virulence, was shown to be positively regulated by the EspR transcription factor. Thus, transcription from the start site, found to be located 67 bp upstream of espA, was dependent upon EspR enhancer-like sequences far upstream (between 884 and 1,004 bp), which we term the espA activating region (EAR).

View Article and Find Full Text PDF

Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance of this is not yet understood.

View Article and Find Full Text PDF

The extracytoplasmic function (ECF) sigma factor SigC has been implicated in the pathogenesis of Mycobacterium tuberculosis but control of its expression and activity is poorly understood. No proteins that interact with SigC have been detected leading to the suggestion that this sigma factor may be primarily controlled at the level of transcription. It has been suggested that SigC may be autoregulatory and a role has also been proposed for SigF in the expression of sigC.

View Article and Find Full Text PDF

UvrD is an SF1 family helicase involved in DNA repair that is widely conserved in bacteria. Mycobacterium tuberculosis has two annotated UvrD homologues; here we investigate the role of UvrD2. The uvrD2 gene at its native locus could be knocked out only in the presence of a second copy of the gene, demonstrating that uvrD2 is essential.

View Article and Find Full Text PDF

Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M.

View Article and Find Full Text PDF

RecX is a small protein that interacts with, and modulates the activity of, RecA protein. In mycobacteria the recX gene is located immediately downstream of the recA gene, and the coding regions overlap. It has previously been shown that these two genes are co-transcribed in Mycobacterium smegmatis.

View Article and Find Full Text PDF

Expression of the Mycobacterium tuberculosis sigG sigma factor was induced by a variety of DNA-damaging agents, but inactivation of sigG did not affect induction of gene expression or bacterial survival under these conditions. Therefore, SigG does not control the DNA repair response of M. tuberculosis H37Rv.

View Article and Find Full Text PDF

Bacterial chromosomally encoded type II toxin-antitoxin (TA) loci may be involved in survival upon exposure to stress and have been linked to persistence and dormancy. Therefore, understanding the role of the numerous predicted TA loci within the human pathogen Mycobacterium tuberculosis has become a topic of great interest. Antitoxin proteins are known to autoregulate TA expression under normal growth conditions, but it is unknown whether they have a more global role in transcriptional regulation.

View Article and Find Full Text PDF

DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins.

View Article and Find Full Text PDF

Mycobacterium tuberculosis ruvC was induced by DNA damage in a DeltarecA strain despite having an appropriately positioned SOS box to which LexA binds in vitro. An inducible transcript start mapped within the SOS box, and transcriptional fusions identified the promoter. Disruption of the SOS box did not prevent induction, indicating that an alternative mechanism plays a significant role in the control of ruvC expression.

View Article and Find Full Text PDF

Correct identification of translational start sites is important for understanding protein function and transcriptional regulation. The annotated translational start sites contained in genome databases are often predicted using bioinformatics and are rarely verified experimentally, and so are not all accurate. Therefore, we devised a simple approach for determining translational start sites using a combination of epitope tagging and frameshift mutagenesis.

View Article and Find Full Text PDF

In this study, we investigated the role of the nucleotide excision repair (NER) pathway in mycobacterial DNA repair. Mycobacterium smegmatis lacking the NER excinuclease component uvrB or the helicase uvrD1 gene and a double knockout lacking both genes were constructed, and their sensitivities to a series of DNA-damaging agents were analyzed. As anticipated, the mycobacterial NER system was shown to be involved in the processing of bulky DNA adducts and interstrand cross-links.

View Article and Find Full Text PDF

UvrD is a helicase that is widely conserved in gram-negative bacteria. A uvrD homologue was identified in Mycobacterium tuberculosis on the basis of the homology of its encoded protein with Escherichia coli UvrD, with which it shares 39% amino acid identity, distributed throughout the protein. The gene was cloned, and a histidine-tagged form of the protein was expressed and purified to homogeneity.

View Article and Find Full Text PDF

The mycobacterium-specific gene Rv2719c was found to be expressed primarily from a promoter that was clearly DNA damage inducible independently of RecA. Upstream of the transcriptional start site for this promoter, sequence motifs resembling those observed previously at the RecA-independent, DNA damage-inducible recA promoter were identified, and the -10 motif was demonstrated by mutational analysis in transcriptional fusion constructs to be important for expression of Rv2719c.

View Article and Find Full Text PDF

The role of the serine/threonine kinase PknH in the physiology and virulence of Mycobacterium tuberculosis was assessed by the construction of a pknH deletion mutant. Deletion of the pknH gene did not affect sensitivity to the antimycobacterial drug ethambutol, although it was previously thought to be involved in regulating expression of emb genes encoding arabinosyl transferases, the targets of ethambutol. Nevertheless, transcription analyses revealed that genes associated with mycobacterial cell wall component synthesis, such as emb and ini operons, are downstream substrates of the PknH signaling cascade.

View Article and Find Full Text PDF

A Mycobacterium tuberculosis strain disrupted in the AraC homologue Rv1931c was isolated. The mutant strain exhibited reduced survival both in macrophages and in a mouse infection model, with survival being restored on complementation with the Rv1931c gene. These results suggest that Rv1931c regulates genes important for virulence of M.

View Article and Find Full Text PDF

In many species of bacteria most inducible DNA repair genes are regulated by LexA homologues and are dependent on RecA for induction. We have shown previously by analysing the induction of recA that two mechanisms for the induction of gene expression following DNA damage exist in Mycobacterium tuberculosis. Whereas one of these depends on RecA and LexA in the classical way, the other mechanism is independent of both of these proteins and induction occurs in the absence of RecA.

View Article and Find Full Text PDF

The recA gene of Mycobacterium tuberculosis is unusual in that it is expressed from two promoters, one of which, P1, is DNA damage inducible independently of LexA and RecA, while the other, P2, is regulated by LexA in the classical way (E. O. Davis, B.

View Article and Find Full Text PDF

Four potential binding sites for LexA were identified upstream of the Mycobacterium tuberculosis lexA gene. A mutational analysis of these sites in a lexA-lacZ reporter construct revealed that only one of these SOS boxes was required for DNA-damage-mediated regulation of lexA expression. A novel DNA-damage-inducible gene, Rv2719c, was identified that was divergently transcribed relative to lexA; the other three SOS boxes were found to be involved in regulating expression of this novel mycobacterial-specific gene.

View Article and Find Full Text PDF

The ubiquitous and highly conserved RecA protein is generally expressed from a single promoter, which is regulated by LexA in conjunction with RecA. We show here using transcriptional fusions to a reporter gene that the Mycobacterium tuberculosis recA gene is expressed from two promoters. Although one promoter is clearly regulated in the classical way, the other remains DNA damage inducible in the absence of RecA or when LexA binding is prevented.

View Article and Find Full Text PDF

The bases of the mycobacterial SOS box important for LexA binding were determined by replacing each base with every other and examining the effect on the induction of a reporter gene following DNA damage. This analysis revealed that the SOS box was longer than originally thought by 2 bp in each half of the palindromic site. A search of the Mycobacterium tuberculosis genome sequence with the new consensus, TCGAAC(N)(4)GTTCGA, identified 4 sites which were perfect matches and 12 sites with a single mismatch which were predicted to bind LexA.

View Article and Find Full Text PDF

The inducible acetamidase of Mycobacterium smegmatis NCTC 8159 is expressed at high levels in the presence of a suitable inducer, such as acetamide. The gene and 1.5 kb of upstream sequence had previously been sequenced.

View Article and Find Full Text PDF