A comparative study of histochemical detection of eosinophils in fixed murine tissue is lacking. Five histochemical methods previously reported for eosinophil detection were quantitatively and qualitatively compared in an established murine RSV vaccine-enhanced inflammation model. Nonspecific neutrophil staining was evaluated in tissue sections of neutrophilic soft tissue lesions and bone marrow from respective animals.
View Article and Find Full Text PDFFuture Virol
January 2008
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. Premature infants, immunocompromised individuals, and the elderly exhibit an increased risk for the development of severe disease after RSV infection. Currently, there is not a safe and effective RSV vaccine available, in part due to our incomplete understanding of how severe immunopathology was induced following RSV infection of children previously immunized with a formalin-inactivated RSV vaccine.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) infection of BALB/c mice previously immunized with a recombinant vaccinia virus (vacv) expressing the attachment (G) protein of RSV (vacvG) results in pulmonary eosinophilia, which mimics the response of formalin-inactivated RSV-vaccinated children, as well as increased weight loss, clinical illness, and enhanced pause (Penh). We show that RSV infection of eosinophil-deficient mice previously immunized with vacvG results in the development of increased weight loss, clinical illness, and Penh similar to that in wild-type controls. These measures of RSV vaccine-enhanced disease are dependent upon STAT4.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in children. Children previously vaccinated with a formalin-inactivated RSV vaccine experienced enhanced morbidity and mortality upon natural RSV infection. Histological analysis revealed the presence of eosinophils in the pulmonary infiltrate of the vaccinated children.
View Article and Find Full Text PDFSecondary exposure to respiratory syncytial virus (RSV) can lead to immunopathology and enhanced disease in vaccinated individuals. Vaccination with individual RSV proteins influences the type of secondary RSV-specific immune response that develops upon challenge RSV infection, as well as the extent of immunopathology. RSV-specific memory CD4 T cells can directly contribute to immunopathology through their cytokine production.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in infants and children worldwide. In addition, RSV causes serious disease in elderly and immune compromised individuals. RSV infection of children previously immunized with a formalin-inactivated (FI)-RSV vaccine is associated with enhanced disease and pulmonary eosinophilia that is believed to be due to an exaggerated memory Th2 response.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is a ubiquitous virus that preferentially infects airway epithelial cells, causing asthma exacerbations and severe disease in immunocompromised hosts. Acute RSV infection induces inflammation in the lung. Thymus- and activation-regulated chemokine (TARC) recruits Th2 cells to sites of inflammation.
View Article and Find Full Text PDF