Current technological advances in neural probing and modulation have enabled an extraordinary glimpse into the intricacies of the nervous system. Particularly, nanomaterials are proving to be an incredibly versatile platform for neurological applications owing to their biocompatibility, tunability, highly specific targeting and sensing, and long-term chemical stability. Among the most desirable nanomaterials for neuroengineering, freestanding nanomaterials are minimally invasive and remotely controlled.
View Article and Find Full Text PDF